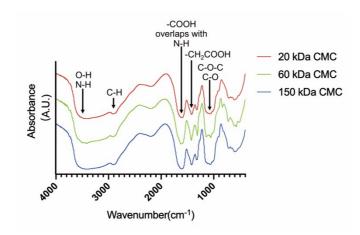
Electronic Supplementary Information


Influence of Molecular Weight and Concentration of Carboxymethyl Chitosan on Biomimetic Mineralization of Collagen

Ruoxun Wang, ‡a Jiaxin Guo, ‡a Xiaoxuan Lin, a Sipeng Chena and Sui Mai*a

- ^a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China. E-mail: maisui@mail.sysu.edu.cn
- ‡ These authors contributed equally to this work.

Fourier transform infrared spectroscopy (FT-IR) analysis of CMC

Methods: FT-IR analysis of CMC of three different MWs (RuibioC3105, MW 20 kDa, Germany; RuibioC3108, MW 60 kDa, Germany; RuibioC3125, MW 150 kDa, Germany) was performed by an FT-IR spectrometer (Nicolet 6700-Contiuμm, Thermo Scientific, Waltham, MA, USA). Each spectrum was the result of signal-averaging of 32 scans at a resolution of 2 cm⁻¹ and the wavenumber ranged from 400 to 4000 cm⁻¹.

Fig. S1 FT-IR spectra of CMC of three different MWs. Basic characteristic peaks at 1597-1650 cm⁻¹ (-COOH group overlaps with N-H bend), 1414-1401 cm⁻¹ (-CH₂COOH group), 3455-3445 cm⁻¹ (O-H and N-H stretch), 2923-2867 cm⁻¹ (C-H stretch) and 1154-1029 cm⁻¹ (C-O and C-O-C stretch) are labelled^{1, 2}.

¹H-Nuclear magnetic resonance (NMR) analysis of CMC

Methods: Proton spectra of CMC of three different MWs were obtained using an NMR spectrometer (Bruker Avance III, Bruker BioSpin, Switzerland) operating at a frequency of 500 MHz under the normal conditions. Samples were prepared by dissolving in deuterium oxide (D₂O). Chemical shifts were referenced using tetramethylsilane as internal standard. Degrees of substitution (DS) of different carboxymethyl groups were determined based on the ¹H NMR signal areas^{3, 4}.

Results: The proton NMR spectra of CMC of three different MWs showed chemical shifts at 3.2-3.5 ppm and 4.2-4.5 ppm (Fig. S2), which could be assigned to monocarboxymethyl substitution on amino and hydroxyl groups respectively^{1, 3}. The resonance signals of the protons from N, N-dicarboxymethyl groups could be found at around 3.9 ppm^{1, 5}, which were larger than those of monocarboxymethylation in all the spectra. DS of N, N-dicarboxymethyl groups of CMC of three different MWs were close to 100%, while DS of O-carboxymethyl groups were approximately 62%, 40% and 52% respectively. DS of N-carboxymethyl groups were not determined here due to small signals overlapping with those of protons from chitosan.

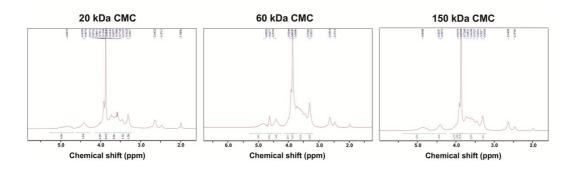


Fig. S2 Proton NMR spectra of CMC of three different MWs.

References

1 N. Inamdar, V. K. Mourya and A. Tiwari, Adv Mater Lett, 2010, 1, 11-33.

2 X. Fei Liu, Y. Lin Guan, D. Zhi Yang, Z. Li and K. De Yao, *J Appl Polym Sci*, 2001, **79**, 1324-1335.

- R. J. N. Hjerde, K. M. Vårum, H. Grasdalen, S. Tokura and O. Smidsrød, *Carbohyd Polym*, 1997, **34**, 131-139.
- Y. Kurita and A. Isogai, *Int J Biol Macromol*, 2012, **50**, 741-746.
- R. A. A. Muzzarelli, P. Ilari and M. Petrarulo, *Int J Biol Macromol*, 1994, **16**, 177-180.