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1. Supporting Figures
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Figure S1. Structures of intermediates for the TCO-azide 1,3-dipolar cycloaddition. Molecular
masses are shown for comparison in TCO induced gel-to-sol transition studies of AzF4-PhePhe
3 hydrogels (HRMS spectra shown in Figures S13-S16 and S18).
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Figure S2. Linear viscoelastic region (LVER) of hydrogel (0.1 wt%) measured from 0.1 to
100% oscillation strain at 25 °C.
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Figure S3. Doxorubicin standard curve measured at 485 nm. Error bars generated from

triplicate data (n=3).
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Figure S4. Frequency sweep measurements of hydrogel (0.1 wt%) with a fixed 1.0% strain at
25 °C and 37 °C.

Figure S5. Photograph of 0.1 wt% AzF4-PhePhe 3 (with 5% DMSO) in buffer (PBS; final
pH 3.9).
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Figure S6. Frequency sweep measurements of AzF,-PhePhe 3 (0.1 wt%) in PBS (final pH 3.9)
with a fixed 1.0% strain at 25 °C.

Figure S7. Transmission electron (TEM) microscope image of hydrogel formed with water
showing fibrous network (Scale bar: 2.0 um).
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Figure S8. Scanning electron microscope (SEM) image of hydrogel formed with water
showing fibrous network (White scale bar: 100 nm).

Figure S9. Transmission electron microscope (TEM) image of AzFs-PhePhe 3 (0.1 wt% with
5% DMSO) in PBS (final pH 3.9); A) immediately after addition of PBS, and B) after 24 hours
incubation of sample in PBS at 37 °C.
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Figure S10. Hydrogel of AzF,-PhePhe 3 (0.1 wt%), before (left) and after (right) addition of
the trigger (TCO; 5 mM).

Figure S11. Transmission electron microscope (TEM) image of hydrogel (0.1 wt%) with TCO
(5 mM) showing broken/disrupted fibrous network (Scale bar: 2.0 pm).
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Figure S12. ATR-FTIR spectra of hydrogel (0.1 wt%) incubated with the trigger (TCO; 5
mM). After addition of TCO, a rapid loss of the azide peak at 2100 cm’! is evident, indicating
that the 1,3-dipolar cycloaddition has transpired.
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Figure S13. HRMS (ESI+) of TCO triggered hydrogel (pH 3.7) incubated for 4 hours.
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Figure S14. HRMS (ESI-) of TCO triggered hydrogel (pH 3.7) incubated for 12 hours.
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Figure S15. HRMS (ESI-) of TCO triggered hydrogel (pH 7.4) incubated for 12 hours.
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Figure S16. HRMS (ESI-) of TCO triggered hydrogel (pH 6.5) incubated for 12 hours.
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Figure S17. '°F NMR spectra of the 1,3-dipolar cycloaddition reaction (a) after 48 hours in
acetonitrile-ds, (b) after addition of 16% D,0 and a further 24 hours of incubation. (c) The 1°F
NMR spectrum of 4-amino-2,3,5,6-tetrafluorobenzyl alcohol 6 (synthesis in Section S2). This
is the product of the linker that would be expected if the 1,6-self-immolation had occurred
under the NMR experimental conditions (generated by reaction of the azaquinone methide with
advantageous water).
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Figure S18. HRMS (ESI-) of NMR sample in CD;CN after 48 hours of 1,3-dipolar
cycloaddition.
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A) 4-Azido-2 3,5 6 -tetrafluorobenzylcarbamate-
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Figure S19. Example HPLC trace of the 1,3-dipolar cycloaddition kinetic experiment between
compound 3 (Rt = 8.1 min) and #rans-cyclooctenol (6 mM) at (A) 0 min, (B) 20 min, (C) 100
min, and (D) Control 24 hours (no trans-cyclooctene). Absorbance is measured at 254 nm, and
the area under curve was used for pseudo first-order calculations
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In absorbance vs time
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Figure S20. Pseudo first-order kinetic data obtained for the reaction of compound 3 (0.5 mM)
with TCO-major (3 mM). Example of data from one experiment. Second-order rate constant,
from triplicate runs, was calculated as 0.0947 = 0.0098 M-!s! (n=3).
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2. Synthesis

The synthesis of 4-azido-2,3,5,6-tetrafluorobenzyl alcohol 7! trans-cyclooct-4-enol (TCO)?3

were conducted according to literature procedures.

Synthesis of 4-amino-2,3,5,6-tetrafluorobenzyl alcohol 6

F Using our previously reported procedure,! a dispersion of LiAIH, (0.181
F OH g, 4.76 mmol) in dry THF (40 mL) under nitrogen was stirred at 0 °C for
HoN F 20 min. The benzoic acid § (0.5 g, 2.39 mmol) was dissolved in dry THF

F (10 mL) and added to the LiAlH,4 dispersion dropwise over 20 min. After

addition of the benzoic acid 5, the reaction was brought to room temperature and stirred
overnight. The progress of the reaction was monitored by TLC, and after completion of the
reaction, the mixture was quenched by slow addition of saturated Na,SO, at 0 °C on ice. The
reaction mixture was passed through Celite and extracted with ethyl acetate. The combined
organic layer was washed with water (2 x 100 mL), brine (2 x 100 mL) and dried over MgSQOy,
and evaporated. The crude reaction mixture was passed through a small plug of silica gel (60%
ethyl acetate:hexanes) which provided the title compound as brown amorphous solid (0.255 g,
54%) which was spectroscopically similar to that reported in the literature.! 'H NMR (CDCls,
400 MHz) 6 4.73 (t, J= 1.6 Hz, 2H).

Synthesis of 4-azido-2,3,5,6-tetrafluorobenzyl alcohol 7

F Using our previously reported procedure,! benzyl alcohol 6 (0.6 g, 3.07
F OH mmol) and p-toluenesulfonic acid (5.2 g, 27.33 mmol) were dissolved in
N F water (15 mL) at 0 °C, followed by slow addition of NaNj; (0.397 g, 6.01

F mmol). The reaction mixture was stirred for 10 min followed by addition

of NaNO, (0.844 g, 12.23 mmol) in portions over 15 min. The reaction mixture was stirred for
30 min and the progress of the reaction was monitored by TLC. After completion of the
reaction, the pH of the reaction mixture was adjusted to ~8 using saturated NaHCOs3, and
extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with water
(2 x 100 mL), brine (2 x 100 mL) and dried over MgSO, and concentrated under vacuum. The
reaction mixture was triturated with hexanes which resulted in a brown solid (0.640 g, 94%),
which was spectroscopically similar to that reported in the literature.!* 'TH NMR (CDCl;, 400
MHz) 6 4.85-4.70 (m, 2H).
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F 0 Synthesis of  4-azido-2,3,5,6-tetrafluorobenzylsuccinic
F o o N carbonate 8

Synthesised using a previously reported literature procedure.>-°
To a solution of N,N'-disuccinimidyl carbonate (DSC) (0.230 g, 0.898 mmol) in dry acetonitrile
(3 mL), was added 4-azido-2,3,5,6-tetrafluorobenzyl alcohol 7 (0.1 g, 0.452 mmol) and
triethylamine (TEA) (0.068 g 0.679 mmol). The mixture was stirred under nitrogen at 0 °C for
30 min and then room temperature for an additional 4 h. The reaction mixture was monitored
by TLC and after complete consumption of starting material, the solvent was evaporated under
vacuum. The crude reaction mixture was dissolved in DCM (50 mL) and washed with water
(2 x 100 mL). The organic layer was collected and dried over MgSO,. The crude reaction
mixture was loaded on silica gel and subjected to flash silica gel column chromatography (20%
ethyl acetate:hexanes) to afford the title compound as a white solid (0.072 g, 44%). '"H NMR
(CDCl3, 400 MHz): 6 5.42 (s, 2H); 2.85 (s, 4H). *C NMR (CDCl;, 100 MHz): 168.7, 151.7,
146.1 (dm, 'Jer = 247 Hz), 140.9 (\Jcr =249 Hz), 122.8 (m), 107.7 (t,J=17.0 Hz), 59.7 (m),
25.9.

Synthesis of (4-azido-2,3,5,6-tetrafluorobenzyloxycarbonyl)-L-phenylalanyl-L-

phenylalanine 3
F Synthesis of 3 was carried out using a modified
N3 F o literature procedure.>® To a solution of 4-azido-
E O\H/H%” OH 235 6-tetrafluorobenzylsuccinic carbonate 8 (0.150
F o 3 O g, 0.414 mmol) in THF (8 mL) was added L-Phe-L-
\© Phe (0.194 g, 0.621 mmol) and DIPEA (0.133 g,

0.618 mmol) followed by addition of deionised water (2 mL). The reaction was stirred for 2 h
at room temperature. After TLC analysis revealed completion of the reaction, the solvent was
removed and the aqueous mixture was acidified (pH 2-3) with 5% citric acid solution. The
acidified reaction mixture was extracted with ethyl acetate (3 x 25 mL) and the combined
organic layer was washed with water (2 x 50 mL). The organic layer was dried (MgSO,) and
filtered. The filtrate was concentrated in vacuo and precipitated in hexanes twice to provide 3
as a pure white solid (0.189 g, 82%). 'H NMR (DMSO-d,, 400 MHz): & 8.27 (d, J=7.6 Hz,
1H), 7.52 (d, J = 8.8 Hz, 1H), 7.29-7.13 (m, 10H), 4.99 (s, 2H), 4.45-4.40 (m, 1H), 4.25-4.19
(m, 1H), 3.07 (dd, J = 14.0, 4.8 Hz, 1H), 2.96-2.90 (m, 2H), 2.64 (dd, /= 13.6, 11.2 Hz, 1H).
3C NMR (DMSO-dg, 100 MHz): 172.7, 171.4, 155.0, 144.8 (dm, 'Jc = 246.0 Hz), 139.9
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(dm, Jcr = 262.0 Hz), 137.9, 137.3, 129.18, 129.15, 128.2, 127.9, 126.4, 126.2, 120.3 (m),
110.3 (t,J=18.0 Hz), 56.1, 53.5, 53.1, 37.3, 36.7. 'F NMR (CD;CN, 376 MHz) & -144.6 (m),
-154.1 (m). HRMS (ESI+) calculated for: Cy¢H,1F4NsOsNa: 582.1371, found: 582.1380. IR:
Uma/em! 2121, 1697, 1659, 1533, 1490, 1234, 1029, 697.
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3. NMR spectra of 8 and 3
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Figure S21. "H NMR and 3C NMR for 4-azido-2,3,5,6-tetrafluorobenzylsuccinic carbonate 8.

S16



o o (=3 o (=3 o o (=3 o o
o o o o o o o o o o o o o o o o o o o o o o o o
=] N ° o <+ @ N =1 =] =] S =] =] =] o =1 =] =1 = 15 N =1 =] o o o o o S
— - — — — — — — — a 0 ~ o n <+ M o~ — =] ] — — — — a @ ~ O n )
L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
o o
o
o
2
)
o
o
o~
e
-
o
@
o 99'9:
—0eye— o
SP-OSWQ 5 6€ A
9P-OSWA 0052 1 N
z19°C N 3
0v9°T £TES
99'T 4 1565~
[ n 5095 " o
+06'C — N ©
st ~ === Lot
126 »
966'7 —F ~— = Fss1 | © Q
6v6°C \. ~ = Fort ©
956'T s
zo'e
$S0'E n 8
LL0°E [}
680°F
06T% o
66T o o
(452 <
mwwuﬂ A /Wk Feot ]
2
6£T'Y ~ u‘uﬁu Fozt n
6V E N . -
86EL 3 stort SE
. £€°0TT
jared g Teorr < -5
6Ty o~ . =
2328 — Tooz e se'oet z
6Eb't sroct Q
cebh 9zt -
sset ] . 68221
2 sTser o
ST'62T (]
a
ST6CT
8E'LET
2 £6'LET AN =]
© 86861/ A
0T’ TPT
bS'EPT “
1 00°9%T 2
©o —
S6'PST —
0ET'L o
602, / 2 5
[xaa
Tl ~s — 8'6 -
eseL N n SE'TLT 5
697°L ] . : = -
postys ~ == Fso1 [N 17—
905°L =]
82S°L ° X
2
9578~ _ =
clog ~ =1 FLort i
o
o«

9.0

9.5

200

R10

220

S17



2600

-144.57
-154.12

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

F-200

I T T T T T T T T T
10 -20 -3 -40 -50 -60 -70 80 oo -loo  -110  |i20| -130| -14 4150 | -16D | -170  -180  -190
f1 (ppm)

Figure S22. 'H, '3C and ""F NMR for (4-azido-2,3,5,6-tetrafluorobenzyloxycarbonyl)-L-
phenylalanyl-L-phenylalanine 3.
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