Supplementary Information

for

Persulfate activation by nano zero-valent iron for the degradation of metoprolol

in water: influencing factors, degradation pathways and toxicity analysis

Yu-qiong Gao*a, Jia Zhanga, Jin-qiang Zhoua, Cong Lia, Nai-yun Gaob, and Da-qiang

Yin^b

^aSchool of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

^bState Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

*Corresponding authors Email address: <u>gaoyq@usst.edu.cn</u> (Yu-qiong Gao)

Tel.: +86 21 55275979

Sample	рН	TOC (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	NO ₃ ⁻ (mg/L)
WWTP effluent	7.02	8.9	57	32	7.1

Table S1. The major qualities of WWTP effluent.

Fig. S1. Effect of EtOH and TBA on MTP degradation in the nZVI/PS system.

Conditions: $[MTP]_0 = 0.05 \text{ mM}$, $[PS]_0 = 2 \text{ mM}$, $[nZVI]_0 = 0.33 \text{ g/L}$, no pH adjustment.

Fig. S2. Degradation of MTP by the nZVI/PS in WWTP effluent.

Conditions: $[MTP]_0 = 0.05 \text{ mM}$, $[PS]_0 = 2 \text{ mM}$, $[nZVI]_0 = 0.33 \text{ g/L}$, no pH adjustment.

Fig. S3. TEM images of nZVI before (a-b) and after (c-d) reaction.

Fig. S4 Total ion current (TIC) chromatograms obtained under different reaction

times.

Fig. S5. MS/MS information for MTP and its intermediate products during the

reaction.

Compounds	Retention	m/z	MS/MS	Structure
	time (min)			
МТР	14.74	268	56,74,98,116,133,159,191,226	
P133	2.02	134	56,74,92,116	
P283- I	11.56	284	56,74,98,116,177,207,224	OC OH H
P299	12.44	300	238,282	O (OH)2
P281	12.39	282	56,74,98,116,167,205,240,263	

Table S2. Intermediate products identified for MTP degradation.

P237	11.97	238	56,72,98,105,133,161,196,220	OH H
P253- I	10.91	254-1	56,72,98,	
			116,133,159,,177,212,236	он
P253- II	1.85	254-2	56,72,98,105,121,133,151,177,	
			212	НО

Fig. S6. The time evolution of the peak areas of the identified products.

Conditions: $[MTP]_0 = 0.05 \text{ mM}$, $[PS]_0 = 2 \text{ mM}$, $[nZVI]_0 = 0.33 \text{ g/L}$, no pH adjustment.