Supporting Information

Efficient synthesis of highly dispersed ultrafine Pd nanoparticles on a porous
 organic polymer for hydrogenation of CO_{2} to formic acid

${ }^{\text {a Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment }}$

Science, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China

Scheme S1. Synthetic route for Pd/AP-POP catalyst.

Figure S1. FT-IR spectra of the AP-POP, 1,3,5-benzenetricarbonyl chloride (TMC) and 2,6-diaminopyridine (DAP). The absorption bands in between $1680 \mathrm{~cm}^{-1}$ correspond to the amide $\mathrm{C}=\mathrm{O}$ stretching frequency, also known as amide-I band. The band observed in the range $1528 \mathrm{~cm}^{-1}$ corresponds to NH bending vibration, called amide-II band. No acid chloride ($700 \mathrm{~cm}^{-1}$) and amine bands corresponding to the starting compounds appear, demonstrating the complete transformation of starting material to polyamide POPs.

Figure S2. The ${ }^{13} \mathrm{C}$ CP-MAS solid state NMR spectra of AP-POP. A signal at 164 ppm corresponds to the amide carbonyl. The overlapping signals between 109 and 150 ppm correspond to the aromatic carbons from phenyl and pyridyl moieties. * indicates peaks arising from spinning side bands.

Figure S3. SEM and TEM images of AP-POP.

Figure S4. The X-ray powder diffraction (XRPD) patterns of AP-POP.

Figure S5. N_{2} adsorption/desorption isotherms of the AP-POP at 77 K (inset: pore size distribution curves of the AP-POP).

Figure S6. Thermogravimetric analysis (TGA) data of AP-POP. The initial weight loss [$\sim 8 \%$] of AP-POP in TGA corresponds to the loss of trapped solvent as well as the moisture in the pores. The framework decomposition occurs above $300^{\circ} \mathrm{C}$ with a gradual weight loss of 40%.

Figure S7. XRD patterns of $\mathrm{Pd} / \mathrm{AP}-\mathrm{POP}, \mathrm{Pd} / \mathrm{AC}$ and $\mathrm{Pd} / \mathrm{C}_{3} \mathrm{~N}_{4}$ catalysts.

Figure S8. TEM images of the $\mathrm{Pd} / \mathrm{AC}$ and $\mathrm{Pd} / \mathrm{C}_{3} \mathrm{~N}_{4}$ catalysts with the Pd NP size
distribution.

Figure S9. The high-resolution spectrum of O 1 s of AP-POP and Pd/AP-POP.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of a reaction mixture after CO_{2} reduction (with and without $\mathrm{Et}_{3} \mathrm{~N}$).

Figure S11. STEM images of the used Pd/AP-POP catalyst and Pd NP size distribution.

Figure S12. Carbon dioxide adsorption isotherms collected at 273 K for AP-POP.

Table S1. Chemical composition and textural properties of different materials.

Materials	Elemental analysis ${ }^{\mathrm{a}}(\%)$					$S_{\text {BET }^{\mathrm{b}}}$
	C	N	H	Pd	$\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	(nm)
	57.96	17.75	4.22	none	43	7.8
$\mathrm{Pd} / \mathrm{AP}-\mathrm{POP}$	56.85	16.32	3.97	3.5	16	10.7
$\mathrm{C}_{3} \mathrm{~N}_{4}$	38.59	58.83	1.02	none	99	4.0
$\mathrm{Pd} / \mathrm{C}_{3} \mathrm{~N}_{4}$	37.2	57.14	0.94	3.3	21	7.6
AC	76.5	0.65	1.9	none	631	2.8
$\mathrm{Pd} / \mathrm{AC}$	75.13	0.57	1.52	3.2	517	2.9

[a] Elemental analysis of C, H and N was carried out by using a PerkinElmer 2400 instrument. Pd content was quantified by ICP-OES. [b] Brunauer-Emmett-Teller (BET) method. [c] The average pore sizes calculated from the adsorption branch by using Barrett-Joyner-Halenda (BJH) method.

Table S2. Comparison of the activity in the transformation of CO_{2} to FA in the pure water condition.

Catalysts	T [$\left.{ }^{\circ} \mathrm{C}\right]$	Time $[\mathrm{h}]$	Pressure $\left(\mathrm{H}_{2} / \mathrm{CO}_{2}\right)$	TON	TOF	Ref.
$\mathrm{Pd} / \mathrm{AP}-\mathrm{POP}$	80	12	$3.0 / 3.0[\mathrm{MPa}]$	128	10.7	This work
PdAg/amine-RF10	40	24	$2.0 / 2.0[\mathrm{MPa}]$	63	2.6	1
$\mathrm{PdNi} / \mathrm{CNT}$	40	16	$25 / 25[\mathrm{bar}]$	3	0.2	2
$0.6 \mathrm{Pd} / \mathrm{C}_{3} \mathrm{~N}_{4}$	40	16	$25 / 25[\mathrm{bar}]$	24	1.5	3
$2 \mathrm{Pd} / \mathrm{ECN}$	40	16	$2.5 / 2.5[\mathrm{MPa}]$	35	2.2	4
$\mathrm{RuCl}_{2}(\mathrm{PTA})_{4}$	60	16	$25 / 25[\mathrm{bar}]$	158	9.9	5

Reference

[1] S. Masuda, K. Mori, Y. Kuwahara and H.Yamashita. J. Mater. Chem. A, 2019, 7, 16356-16363.
[2] L. T. M. Nguyen, H. Park, M. Banu, J. Y. Kim, D. H. Youn, G. Magesh, W. Y. Kim, and J. S. Lee, RSC Adv., 2015, 5, 105560-105566.
[3] H. Park, J. H. Lee, E. H. Kim, K. Y. Kim, Y. H. Choi, D. H. Youn and J. S. Lee, Chem. Comтии., 2016, 52, 14302-14305.
[4] C. Mondelli, B. Purtolas, M. Ackermann, Z. Chen and J. P. Ramírez, ChemSusChem, 2018, 11, 2859-2869.
[5] S. Moret, P. J. Dyson and G. Laurenczy, Nat. Commun., 2014, 5, 4017.

