Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Materials for

High-Ni Cathode Material improved by Zr for Stable Cycling of Li-Ion Rechargeable Batteries

Kwangjin Park^a, Dong Jin Ham^b, Seong Yong Park^c, Jihyun Jang^b, Dong-Hee Yeon^b, San Moon^{b*}, Sueng Jin Ahn^{b*}

^aDepartment of Mechanical Engineering, Gachon University, 1342 Sungnamdaero, Sujeong-Gu,

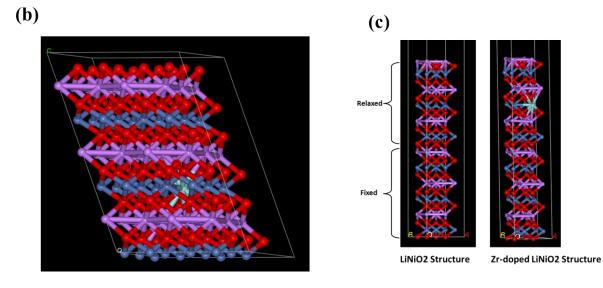
Sungnam Si, Gyeonggi-do 13120, Republic of Korea

^bEnergy Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130,

Samsung-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do 16678, Republic of Korea

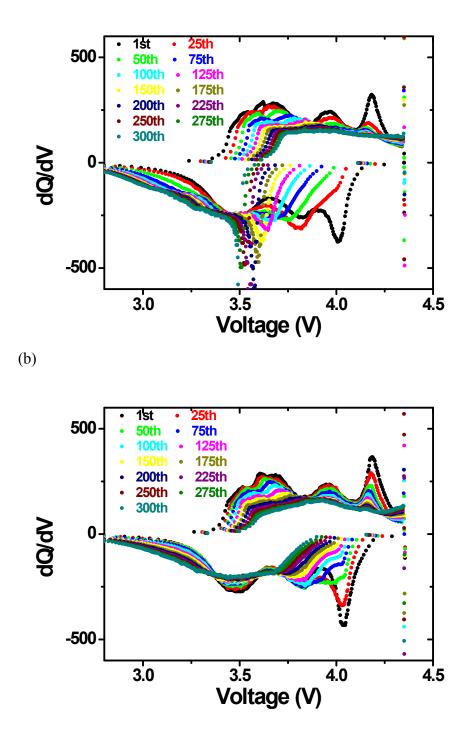
^cAnalytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro,

Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Republic of Korea

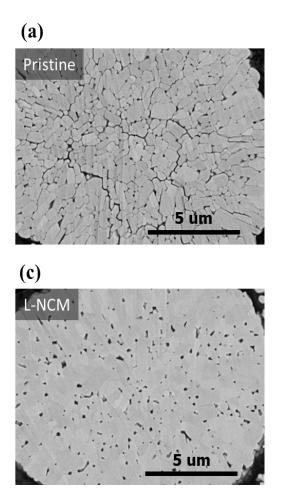

Correspondence to: jaminanman@gmail.com

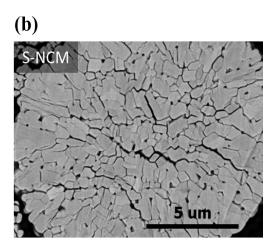
Sample	a (Å)	c (Å)	Intensity ratio (003)/(104)
Pristine NCM	2.8729	14.1976	1.50
S-NCM	2.8735	14.2028	1.62
L-NCM	2.8745	14.2079	1.63

Table S1.


Lattice parameters of pristine NCM, Zr solid NCM, and Zr solution NCM.

(a)		
	2nd phase@ Bulk	
	2nd phase@ Bulk $Li_{36}Ni_{36-x}Zr_xO_{72} + x\left(Li + \frac{1}{2}O_2\right) \leftrightarrow (36-x)LiNiO_2 + xLi_2ZrO_3$	ΔH_1
	$Li_{36}Ni_{36-x}Zr_{x}O_{72} + x\left(2Li + \frac{3}{4}O_{2}\right) \leftrightarrow (36-x)LiNiO_{2} + \frac{x}{2}Li_{6}Zr_{2}O_{7}$	ΔH_2
	2nd phase@ surface	
	$(Li_{24}Ni_{23}ZrO_{48}) + LiNiO_2 + Li + \frac{1}{2}O_2 \leftrightarrow (Li_{24}Ni_{24}O_{48}) + Li_2ZrO_3$	ΔH_1
	$(Li_{24}Ni_{23}ZrO_{48}) + LiNiO_2 + 2Li + \frac{3}{4}O_2 \leftrightarrow (Li_{24}Ni_{24}O_{48}) + \frac{1}{2}Li_6Zr_2O_7$	ΔH_2





(a) Reactions of the bulk and surface(b) Atomic model of LiNiO₂ slabs from the surface to the bulk

Fig. S2. dQ/dV at intervals of 25 cycles for (a) S-NCM (b) L-NCM

Fig. S3.

Cross-sectional SEM images of the powder after the 1st cycle for (a) pristine NCM (b) S-NCM and (c) L-NCM.