Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Figure S1. Optimized tautomers of AMT and the energies (in kcal/mol) relative to structure (a) at B3LYP-D3(BJ)/6-311++G(d, p) level.

Wavenumber(cm⁻¹)

Figure S2. FT-Raman and calculated Raman activities (a), (b), (c), (d),(e), (f), (g) and (h) for the optimized isomers in Figure S1 at B3LYP-D3(BJ)/6-311++G(d, p) level.

Figure S3. (a) UV absorption and (b) emission (λ_{ex} =230 nm) spectra for AMT (4.78×10⁻⁵ mol/L) in CH₃OH with different volume of [(Bu)₄ N]⁺OH⁻ (1.53 mol/L).

Figure S4. Kinetics of ³AMT measured at 550 nm in CH₃CN, CH₃OH and H₂O and fitted with a single exponential function, the time constants are listed close to the curves. **Notes:** Based on the experimental results, as shown in Figure S4, the solvents induce transient absorption spectra not return to the baseline due to its polarity, especially the hydrogen bonding interaction effect on the excited state structure.

Figure S5. Calculated energies (kcal/mol) of S_0 (circle) and $\pi\pi^*$ (rectangular) states relative to ground state thione AMT on the selected IRC points at B3LYP(TD)-D3(BJ)/6-31G* level.

Modes	Calc	Exp		Desciption (PED%)		
	(Raman activity	FT-raman	FT-IR			
	/IR activity)					
ν_1	3684(88.1/104)			$N_1H_6(99)$ strech		
v ₂	3662(57.3/65.9)			$N_4H_{11}(99)$ strech		
ν ₃	3644(73.1/37.8)			$N_7H_8(58)+N_7H_9(42)$ strech		
ν_4	3549(242/30.9)			$N_7H_8(42)+N_7H_9(58)$ strech		
ν ₅	1686(53.0/333)	1655	1647	$N_2C_3(35)$ strech + $N_7C_3(23)$ strech + $H_9N_7H_8(19)$ bend		
v ₆	1628(9.39/31.8)	1585	1589	$N_2C_3(13)$ strech+H ₉ N ₇ H ₈ (59)bend		
ν ₇	1517(26.2/505)	1498	1546	$N_1C_5(33)$ strech+ $N_4C_3(14)$ strech+ $H_6N_1N_2(18)$ bend+ $H_{11}N_4C_3(13)$ bend		
ν_8	1508(12.9/8.97)		1482	$N_4C_3(19)$ strech+ $N_7C_3(15)$ strech+ $H_6N_1N_2(19)$ bend+ $N_1N_2C_3(14)$ bend		
V9	1340(3.24/21.4)	1402	1391	$H_6N_1N_2(32)$ bend $+H_{11}N_4C_3(30)$ bend $+C_5N_1N_2(12)$ bend		
v ₁₀	1275(1.46/2.19)	1344		$N_1C_5(32)$ strech + $C_5N_1N_2(29)$ bend		
v ₁₁	1188(12.2/49.4)	1236	1239	$N_7C_3(11)$ strech+ $N_1N_2(12)$ strech+ $H_{11}N_4C_3(19)$ bend+ $H_8N_7C_3(10)$ bend		
v ₁₂	1166(9.87/109)	1144	1143	$N_1N_2(21)$ strech+ $S_{10}C_5(18)$ strech+ $H_{11}N_4C_3(13)$ bend+ $H_8N_7C_3(25)$ bend		
v ₁₃	1060(2.37/45.1)		1068	$N_4C_3(17)$ strech + $N_1N_2(36)$ strech + $H_8N_7C_3(23)$ bend		
v_{14}	1035(19.2/11.8)	1028		$N_2C_3(18)$ strech+ $N_4C_3(15)$ strech+ $N_1N_2(10)$ stretch+ $N_4C_3N_2(42)$ bend		
v ₁₅	1008(4.83/8.83)	991		$N_4C_3(15)$ strech + $N_1N_2C_3(42)$ bend		
v_{16}	757(4.38/8.96)	758	755	$N_7C_3(27)$ strech + $N_4C_3N_2(19)$ bend + $N_1N_2C_3(42)$ bend		
v ₁₇	732(1.40/83.0)	723	706	$H_9N_7C_3N_4(11)$ tors+ $N_4C_3N_2N_1(25)$ tors+ $N_7N_4N_2C_3(34)$ out		
v ₁₈	660(0.795/154)	692		$H_8N_7C_3N_4(24) tors + H_9N_7C_3N_4(11) tors + C_5N_1N_2C_3(12) tors + S_{10}N_1N_4C_5(29) out$		

 $\textbf{Table S1.} \ \text{Experimental and calculated vibrational frequencies at B3LYP-D3(BJ)/6-311++} G(d, p) \ \text{level and assignments of thione AMT in gas phase.}$

V ₁₉	649(0.804/47.7)	646	639	$H_6N_1N_2C_3(11) tors + H_8N_7C_3N_4(22) tors + C_5N_1N_2C_3(24) tors + S_{10}N_1N_4C_5(16) out$
V ₂₀	518(9.56/94.7)	501	513	$S_{10}C_5(21)$ strech+ $C_5N_1N_2(10)$ bend+ $H_6N_1N_2C_3(13)$ tors+ $H_{11}N_4C_3N_7(31)$ tors
v ₂₁	513(7.47/72.1)		497	$S_{10}C_5(22)$ stretch+ $C_5N_1N_2(11)$ bend+ $H_6N_1N_2C_3(11)$ tors+ $H_{11}N_4C_3N_7(25)$ tors
V ₂₂	467(2.15/28.2)	465	467	$N_7C_3N_2(12)$ bend+ $C_5N_1N_2(45)$ bend+ $H_{11}N_4C_3N_7(16)$ tors
V ₂₃	432(2.85/4.25)	399		$N_7C_3N_2(37)$ bend+ $S_{10}C_5N_4(18)$ bend+ $H_{11}N_4C_3N_7(16)$ tors
V ₂₄	322(0.471/5.10)			$N_4C_3N_2N_1(36)$ tors+ $N_7N_4N_2C_3(36)$ out
V ₂₅	271(1.68/38.6)	289		$N_7C_3N_2(12)$ bend+ $S_{10}C_5N_4(20)$ bend+ $H_8N_7C_3N_4(16)$ tors+ $H_9N_7C_3N_4(41)$ tors
V ₂₆	244(3.78/10.6)	260		$N_7C_3N_2(14)$ bend + $S_{10}C_5N_4(44)$ bend + $H_8N_7C_3N_4(14)$ tors + $H_9N_7C_3N_4(13)$ tors
V ₂₇	149(0.576/2.28)			$C_5N_1N_2C_3(43)$ tors+ $N_4C_3N_2N_1(17)$ tors + $S_{10}N_1N_4C_5(26)$ out

Table S2. 266 nm resonance Raman spectra and calculated vibrational frequencies at B3LYP-D3(BJ)/6-311++G(d, p) level using H₂O PCM model and assignments of thione AMT in solvents

Modes	Calc.(Raman activity	Ех	кр.	Desciption (PED%)		
	/IR activity) ^a					
		CH ₃ OH	H ₂ O			
v ₅	1669(113/681)	1646	1656	$N_2C_3(25)$ stretch+ $N_7C_3(26)$ stretch+ $H_9N_7H_8(27)$ bend		
ν ₆	1627(31/112)	1619	1615	$N_2C_3(16)$ stretch+H ₉ N ₇ H ₈ (55)bend		
v_7	1519(104/359)	1524	1528	$N_1C_5(23)$ stretch+ $H_6N_1N_2(39)$ bend+ $N_4C_5N_1(10)$ bend		
ν_8	1501 (147/387)	1491	1490	$N_2C_3(16)$ stretch+ $N_4C_3(30)$ stretch+ $H_{11}N_4C_3(11)$ bend+ $H_8N_7C_3(12)$ ben		
				d		
V9	1363(25/23)	1378	1386	$N_4C_5(21)$ stretch+ $H_6N_1N_2(23)$ bend+ $H_{11}N_4C_3(33)$ bend		
v_{10}	1303(6/3)	1307	1319	$N_1C_5(38)$ stretch+ $H_6N_1N_2(18)$ bend		
v ₁₁	1194(117/117)	1210	1220	$N_1C_5(12)$ stretch+ $S_{10}C_5(10)$ stretch+ $H_6N_1N_2(11)$ bend+		

				$H_{11}N_4C_3(19)$ bend+ $N_4C_5N_1(19)$ bend
v ₁₂	1165(24/196)			$N_2C_3(15) stretch + N_4C_5(24) stretch + H_8N_7C_3(19) bend +$
				$N_4C_5N_1(10)$ bend
v ₁₃	1056(7.8/73)			$N_2C_3N_4(10)$ bend+ $H_8N_7C_3(36)$ bend+ $C_3N_4C_5(29)$ bend
v_{14}	1042(59/1)			$N_4C_5(14)$ stretch+ $N_4C_5N_1(41)$ bend
v ₁₅	1010(11/47)	989	1004	$N_4C_3(52)$ stretch+ $N_2C_3N_4(16)$ bend
v ₁₆	759(9.7/10)		804	$N_7C_3(29)$ stretch+ $N_2C_3N_4(32)$ bend+ $C_3N_4C_5(12)$ bend
v ₁₇	724(2.8/13.8)	754	724	$N_2C_3N_4C_5(32)$ tors+ $N_7N_4N_2C_3(49)$ out
v ₁₈	659(3/43)	643	658	$H_6N_1N_2C_3(13)$ tors+ $C_3N_4C_5N_1(39)$ tors+ $S_{10}N_1N_4C_5(37)$ out
V ₁₉	574(1/478)			$H_9N_7H_8(11)$ bend+ $H_8N_7C_3N_4(49)$ tors+ $H_9N_7C_3N_4(26)$ tors
V ₂₀	541(0.3/260)			$H_6N_1N_2C_3(17)$ tors+ $H_{11}N_4C_3N_7(56)$ tors+ $S_{10}N_1N_4C_5(10)$ out
v ₂₁	506(20/38)		509	$S_{10}C_5(50)$ stretch+ $C_3N_4C_5(18)$ bend
v ₂₂	481(1.6/35)			$H_6N_1N_2C_3(61)$ tors+ $H_{11}N_4C_3N_7(26)$ tors
V ₂₃	448(14.8/13.5)		457	$N_7C_3N_2(51)$ bend+ $S_{10}C_5N_4(21)$ bend
V ₂₄	337(1/20)			$N_2C_3N_4C_5(36)$ tors+ $C_3N_4C_5N_1(11)$ tors+ $N_7N_4N_2C_3(32)$ out
V ₂₅	279(1.6/52)			$H_8N_7C_3N_4(31)$ tors+ $H_9N_7C_3N_4(51)$ tors
V ₂₆	249(10/2.5)			$N_7C_3N_2(17) + S_{10}C_5N_4(61)$ bend

Table S3. Experimental and calculated triplet electronic transition energies, corresponding orbitals and oscillator strengths with the electronic transition character for the optimized T_1 state at B3LYP(TD)-D3(BJ)/6-31G* level.

States	Orbitals(coefficient	Electronic	Transition Energy(nm)		Oscillator strength(f)	
)	transition				
			Calc	Expt	Calc	Expt
AMT in C	H ₃ CN					
T ₁	29→30(0.99635)	$\pi \rightarrow \pi^*$	1125.57		0.0000	
T ₂	28→30(0.97857)	$\pi \rightarrow \pi^*$	565.44	613	0.1494	
T ₃	27→30(0.78374)	$\pi \rightarrow \pi^*$	357.42		0.0028	
T ₄	27→30(0.49870)	$\pi \rightarrow \pi^*$	356.35	328.2	0.0238	
T ₅	26→30(0.89785)	$\pi \rightarrow \pi^*$	322.97		0.0063	
T ₆	29→31(0.94498)	$\pi \rightarrow \pi^*$	297.46		0.0064	
T ₇	25→30(0.29788)	$\pi \rightarrow \pi^*$	273.86	295.07	0.0398	
	28→31(0.32522)	$\pi \rightarrow \pi^*$				

	25π	26π	27π	28π	: 29π	30π*	31π*		
AMT in H ₂ O									
T ₁	29→30(0).99632)	$\pi \rightarrow \pi^*$		1112.52			0.0000	
T ₂	28→30(0	.97863)	$\pi \rightarrow \pi^*$		564.82	600		0.1489	
T ₃	27→30(0).87456)	$\pi \rightarrow \pi^*$		357.50			0.0024	
T ₄	27→30(0).31013)	$\pi \rightarrow \pi^*$		355.57	317.3		0.0243	
	28→30(0	.15798)	$\pi \rightarrow \pi^*$						
	28→31(-	0.14434)	$\pi \rightarrow \pi^*$						
T ₅	26→30(0).89856)	$\pi \rightarrow \pi^*$		323.12			0.0062	
T ₆	29→31(0	0.94623)	$\pi \rightarrow \pi^*$		297.15			0.0064	
T ₇	25→30(0	0.30532)	$\pi \rightarrow \pi^*$		273.18	292.2	1	0.0399	
	28→31(0).33513)	$\pi \rightarrow \pi^*$						
								ξ.	
		9 3' 🔨	7 🤜						
	25π	26π	27π	28π	: 29π	30π*	· 31	π*	

	States	Orbitals(coefficient	Electronic	Transition	
			transition	Energy	
		,		(kcal/mol)	
-10(thione)	S ₁	29→31(0.70424)	$n \rightarrow \pi^*$	133.2	
	S ₂	30→31(0.67205)	$\pi \rightarrow \pi^*$	141.2	
		30→32(0.17648)	$\pi \rightarrow \pi^*$		28π 29n 30π $31\pi^*$ $32\pi^*$
	S ₃	30→32(0.63838)	$\pi \rightarrow \pi^*$	156.8	-
	5	28->31(-0.23277)	$\pi \rightarrow \pi^*$		
-8	S ₁	29→31(0.70315)	$n \rightarrow \pi^*$	141.6	
	S ₂	30→31(0.66720)	$\pi \rightarrow \pi^*$	147.2	- 2 - 2 - 2 - 2 - 2 - 2
		30→32(0.17646)	$\pi \rightarrow \pi^*$		28π 29n 30π $31\pi^*$ $32\pi^*$
		29→33(-0.11105)	$n \rightarrow \pi^*$		
	S ₃	28→31(-0.19022)	$\pi \rightarrow \pi^*$	162.9	2 Mar
		30->31(-0.11702)	$\pi \rightarrow \pi^*$		33 <i>π</i> *
		30->32(0.50303)	$\pi \rightarrow \pi^*$		
		30->33(-0.42931)	$\pi \rightarrow \pi^*$		
-6	S ₁	29→31(0.68931)	$n \rightarrow \pi^*$	152.1	
		30→31(0.11686)	$\pi \rightarrow \pi^*$		2.2
	S_2	30→31(0.64839)	$\pi \rightarrow \pi^*$	154.0	29n 30π $31\pi^*$ $32\pi^*$
		29→31(-0.12649)	$n \rightarrow \pi^*$.965
		29→33(0.15282)	$n \rightarrow \pi^*$		Aire
	S_3	30→32(0.27441)	$\pi \rightarrow \pi^*$	162.4	33π*
		30→33(0.63972)	$\pi \rightarrow \pi^*$		
-4	\mathbf{S}_1	30→32(0.63128)	$\pi \rightarrow \pi^*$	159.3	
		30→31(0.23986)	$\pi \rightarrow \pi^*$		21.0.00
		29→31(0.16847)	$n \rightarrow \pi^*$		$29n 30\pi 31\pi^* 32\pi^*$
	S_2	30→31(0.59728)	$\pi \rightarrow \pi^*$	161.1	See.
		29→32(0.21265)	$n \rightarrow \pi^*$		- -
		30→32(-0.24480)	$\pi \rightarrow \pi^*$		33π*
		30→33(0.15849)	$\pi \rightarrow \pi^*$		-
	S ₃	29→31(0.68285)	n→π	164.8	
		30→32(-0.17108)	$\pi \rightarrow \pi^*$		
-2	\mathbf{S}_1	30 ->32 (0.67820)	$\pi \rightarrow \pi^*$	157.1	
		28 -> 32(0.11368)	$\pi \rightarrow \pi^*$		24 - 24 - 25 - 28 - 28 - 28 - 28 - 28 - 28 - 28
		30 -> 31(0.15010)	$\pi \rightarrow \pi^*$		28π 29n 30π $31\pi^*$
	S_2	30 ->31 (0.61272)	$\pi \rightarrow \pi^*$	166.8	
		29 ->32 (0.25959)	$n \rightarrow \pi^*$		1996
		30->32(-0.13736)	$\pi \rightarrow \pi^*$		$32\pi^*$ $33\pi^*$
		30 -> 33(0.14017)	$\pi \rightarrow \pi^*$		
	S ₃	29→31(0.68760)	$n \rightarrow \pi^*$	176.3	
		29→32(-0.11689)	$n \rightarrow \pi^*$		

Table S4. Transition orbital nature and energy (kcal/mol) corresponding to the ground structures

in Figure S1

0	S_1	30 ->31 (0.69063)	$\pi \rightarrow \pi^*$	154.5	
		29 -> 31(0.14302)	$\pi \rightarrow \pi^*$		Stan Stan Of a 1882
	S ₂	30 ->32 (0.61848)	$\pi \rightarrow \pi^*$	170.7	$28n 29\pi 30\pi 31\pi^*$
		28 -> 31(0.28304)	$n \rightarrow \pi^*$		Adia Ra
		29 -> 32(0.11623)	$\pi \rightarrow \pi^*$		
		30 ->33 (0.12864)	$\pi \rightarrow \pi^*$		$32\pi^*$ $33\pi^*$
	S ₃	28→32(0.13753)	$n \rightarrow \pi^*$	179.8	
		29→31(0.67328)	$\pi \rightarrow \pi^*$		
		30→31(-0.14716)	$\pi \rightarrow \pi^*$		
2	S_1	30 ->31 (0.68505)	$\pi \rightarrow \pi^*$	151.4	
		29 -> 31(0.16922)	$\pi \rightarrow \pi^*$		92
	S_2	30 ->32 (0.61071)	$\pi \rightarrow \pi^*$	172.2	$28n 29\pi 30\pi 31\pi^*$
		28 ->31 (0.29529)	$n \rightarrow \pi^*$		tain Sala
		29 -> 32(0.12970)	$\pi \rightarrow \pi^*$		
		30 -> 33(0.12200)	$\pi \rightarrow \pi^*$		$32\pi^*$ $33\pi^*$
	S ₃	29→31(0.68087)	$\pi \rightarrow \pi^*$	174.9	
		30→31(-0.17085)	$\pi \rightarrow \pi^*$		
4	S ₁	30 ->31 (0.67888)	$\pi \rightarrow \pi^*$	148.1	
		29 -> 31(0.19129)	$\pi \rightarrow \pi^*$		91 0)
	S_2	29 ->31 (0.67540)	$\pi \rightarrow \pi^*$	170.0	$28n 29\pi 30\pi 31\pi^* 32\pi^*$
		30->31(-0.19254)	$\pi \rightarrow \pi^*$		Sec.
	S ₃	28→31(0.29526)	$n \rightarrow \pi^*$	171.3	
		29→32(0.12345)	$\pi \rightarrow \pi^*$		33π*
		30→32(0.61112)	$\pi \rightarrow \pi^*$		
		30→33(0.11399)	$\pi \rightarrow \pi^*$		
6	S ₁	29 ->31 (0.20580)	$\pi \rightarrow \pi^*$	145.1	
		30 -> 31(0.67405)	$\pi \rightarrow \pi^*$		8
	S_2	29 ->31 (0.67254)	$\pi \rightarrow \pi^*$	165.8	$28n 29\pi 30\pi 31\pi^* 32\pi^*$
		30->31(-0.20789)	$\pi \rightarrow \pi^*$		
	S ₃	28→31(-0.27753)	$n \rightarrow \pi^*$	168.8	
		30→32(0.62486)	$\pi \rightarrow \pi^*$		33Ryd
		30→33(0.11105)	π→Ryd		
8	S_1	29 ->31 (0.21251)	$\pi \rightarrow \pi^*$	142.7	
		30 -> 31(0.67141)	$\pi \rightarrow \pi^*$		
	S_2	29 ->31 (0.67018)	$\pi \rightarrow \pi^*$	162.6	$28n 29\pi 30\pi 31\pi^* 32\pi^*$
		30->31(-0.21527)	$\pi \rightarrow \pi^*$		Sec.
	S ₃	28→31(-0.23729)	$n \rightarrow \pi^*$	165.6	
		30→32(0.64449)	$\pi \rightarrow \pi^*$		33Ryd
10(thiol)	S_1	29 -> 31(0.21347)	$\pi \rightarrow \pi^*$	140.6	
		30 -> 31(0.67073)	$\pi \rightarrow \pi^*$		-
	S ₂	29 ->31 (0.66943)	$\pi \rightarrow \pi^*$	160.4	29π 30π $31\pi^*$
	-	30->31(-0.21673)	$\pi \rightarrow \pi^*$		
	S ₂	$28 \rightarrow 31(-0.18657)$	$n \rightarrow \pi^*$	162.4	
		$30 \rightarrow 32(0.66030)$	$\begin{array}{c} \pi \rightarrow \pi^{*} \end{array}$	102.1	$28n 32\pi^* 33Ryd$
		$30 \rightarrow 33(0\ 10832)$	$\pi \rightarrow Rvd$		
L		50 55(0.10052)	_ n / nyu		