Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary materials

Structural transition and magnetic properties of Mn doped Bi_{0.88}Sm_{0.12}FeO₃ ceramics

N. T. Hien^{1,2}, N. D. Vinh³, N. V. Dang³, T. T. Trang³, H. T. Van⁴, T. T. Thao³, L. T. Hue³, and

P.T. Tho^{3,*}

¹Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

²Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam ³Department of Physics and Chemistry, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam ⁴Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

Figure S1. The comparison of XRD patterns of the as-prepared and after 21 months synthesis for x = 0.02 and 0.1 samples.

The change in relative intensity of the peaks at 2 θ arounds 22.5, 32, and 46 confirm the isothermal structural transition from the *R3c* to *Pnam* phases.

Figure S2. Raman spectra of sample x = 0.1 measured for single grain (grain-A) before and after poled in an electric field of 10 kV and 17 kV.

Figure S3. Raman spectra of sample x = 0.1 measured for single grain (grain-B) before and after poled in an electric field of 10 kV and 17 kV.

Figure S2, S3 shows the Raman spectra of sample x = 0.1 measured by Xpolar Raman 532 nm for different grain (grain A and B) before and after poled in an electric field of 10 kV and 17 kV. The E-2(TO), A₁-2(TO), and E-9(LO) modes are obviously changed their intensity in the grain A and B. The change in intensity of these modes are well confirmed the orthorhombic/rhombohedral phases switching.