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Fig. S1. Raman spectra of GO, Fe3O4/RGO and BFG-56%.
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Fig. S2. TEM-EDS spectrum of BFG-56%.
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Preparation of BiOBr/RGO

10mg BiOBr was slowly added to 3.2 mL of GO (1mg/mL) suspension，respectively. After 

vigorously stirring for 4 h, the resulting mixture was poured into a 20 mL Teflon-lined autoclave 

and heated to 160 °C. for 12 h. The obtained solid precipitate was centrifuged, washed several 

times with deionized water and absolute ethanol to remove residual ions, and the final product 

was dried in air at 60 °C to obtain powdery samples. The synthesized composite materials were 

designated as BiOBr/RGO.
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Fig. S3. XRD patterns of BiOBr/RGO.
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Fig. S4. SEM images of (a) RGO and (b) BiOBr/RGO.
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Fig. S5. XRD pattern of BFG-56% after recycling.
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Fig. S6. Optimized geometric structures of (a)RGO, (b) BiOBr, and (c) BiOBr/RGO heterostructure. 

(gray, red, violet and orange spheres represent C, O, Bi and Br atoms, respectively). For 

interpretation of the references to color in this figure legend, the reader is referred to the Web 

version of this article.

In order to model BiOBr/Fe3O4/RGO heterostructure, the optimized structures were 

constructed at first. The {001} facets of BiOBr was normally selected because the {001} facets with 

1 layer of Br termination have ignorable cleavage energies, and accordingly, an extremely high 

thermodynamic stability. Furthermore, the {001} facet was experimentally confirmed as the active 

crystal plane with high photocatalytic activity. And then, a 51 relaxed BiOBr (001) surface, a 8

 RGO formed heterostructure, as shown in the Fig. S6.3
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Table S1. The kapp values of different photocatalysis degradation of RhB in the literature under 

visible light irradiation

Photocatalysts kapp (BiOBr) min-1
kapp (BiOBr based 

composites) min-1
Increase multiple Ref.

GO/BiOBr 0.15 0.049 0.3 [1]

Ag-modified BiOBr 0.020 0.023 0.87 [2]

LaFeO3/BiOBr 0.099 0.1301 1.32 [3]

CdS/BiOBr 0.037 0.050 1.35 [4]

BiOBr/BiOI 0.034 0.056 1.65 [5]

BiOBr/RGO 0.029 0.052 1.79 [6]

BiOBr@TiO2 0.033 0.061 1.85 [7]

BiOBr/UiO-66-NH2 0.064 0.119 1.86 [8]

BiOBr-Fe3O4/RGO 0.036 0.071 1.97 [9]

MoS2/BiOBr 0.022 0.055 2.50 [10]

BiOBr/Fe3O4/RGO 0.022 0.049 2.23 This work

Table S2. Total Mulliken Atomic Populations of RGO and BiOBr layers before and after contact for 

BiOBr/RGO heterostructure.

C O Br Bi

RGO (before) 4.00

BiOBr (before) 6.90 7.51 3.59

RGO (after) 4.03

BiOBr (after) 6.90 7.26 (7.52) 3.62

Charge transfer 0.03 0.00 -0.25 (0.01) 0.03
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