Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

KOH activation of coal-derived microporous carbons for oxygen

reduction and supercapacitors

Shaokuo Guo,^{a,b} Beibei Guo,^b Ruguang Ma,^b Yufang Zhu,^{b,*} and Jiacheng Wang^{b,*}

^a School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China

*zjf2412@163.com (Y. Zhu); jiacheng.wang@mail.sic.ac.cn (J. Wang)

Fig. S1 SEM of pure coal without KOH activation.

Fig. S2 (a) XPS survey spectra of PC4; C1s (b) and O1s (c) XPS spectra of PC4.

Fig. S3 PCs of different temperature (a) Raman spectra; (b) nitrogen adsorptiondesorption isotherms; (c) pore size distribution curves; (d) trend of specific surface area and pore volume.

Fig. S4 PCs of different temperature (a) LSV curves at 1600 rpm; (b) the corresponding Tafel plots; (c) Bar graph of E_{Onset} and $E_{Half-Wave}$.

Fig. S5 (a) Nyquist plots (the inset: the enlarged part) and (b) GCD cyclic measurement for PC4 at 10 A g^{-1} .

Fig. S6 Samples at different temperatures (a) CV curves at 50 mV s^{-1} ; (b) specific capacitance at different current densities; (c)Nyquist plots (d) the enlarged part.

Materials	BET surface area (m2/g)	Half-wave potential V (vs. RHE)	Capacitance F g ⁻¹	Reference
PC4	2092.2	0.78	128	This work
NPC-1000	140	0.82	140	1
NPC-800	1109.2	0.79		2
LEJC-600	1268		212	3
S-800	2105.9	0.80	208	4
THPC	2870		224	5
NCAs	1626	0.79	354	6

Table S1. Compare with other literature materials.

- B. Guo, R. Ma, Z. Li, S. Guo, J. Luo, M. Yang, Q. Liu, T. Thomas and J. Wang, *Nano-Micro Lett*, 2020, 12.
- 2. W. He, R. Ma, Y. Zhu, M. Yang and J. Wang, *J Inorg Mater*, 2019, 34, 1115-1122.
- L. Zhu, Q. Gao, Y. Tan, W. Tian, J. Xu, K. Yang and C. Yang, *Micropor and Mesopor Mat*, 2015, 210, 1-9.
- 4. S. Gao, Y. Chen, H. Fan, X. Wei, C. Hu, H. Luo and L. Qu, *J Mater Chem A*, 2014, **2**, 3317.
- L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, Energ Environ Sci, 2013, 6, 2497.
- J. Zhang, G. Chen, Q. Zhang, F. Kang and B. You, ACS Appl Mater Interfaces, 2015, 7, 12760-12766.