Supporting Information

for

Ternary selenides $A_2Sb_4Se_8$ (A = K, Rb, Cs) as an n-type thermoelectric material with high power factor and low lattice thermal conductivity: Importance of the

conformationally flexible Sb-Se-Se bridges

Changhoon Lee¹, Sujee Kim¹, Won-Joon Son², Ji-Hoon Shim^{1*}, Myung-Hwan Whangbo^{3-5*}

¹Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Korea

² Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon 16678, Korea

³ Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA. ⁴ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, China, 350002

⁵ State Key Laboratory of Crystal Materials, Shandong University, Jinan, China, 250100

Figure S1. Total DOS plots calculated for (a) $Rb_2Sb_4Se_8$ and (b) $Cs_2Sb_4Se_8$.

Figure S2. Thermodynamic properties of Rb₂Sb₄Se₈ calculated at 300 K: (a) Seebeck coefficient S as function of the chemical potential μ. (b) Seebeck coefficient S as function of the carrier density n. (c) Power factor S²σ/τ as function of the chemical potential μ. (d) Power factor S²σ/τ as function of the carrier density n.

Figure S3. Thermodynamic properties of $Cs_2Sb_4Se_8$ calculated at 300 K: (a) Seebeck coefficient S as function of the chemical potential μ . (b) Seebeck coefficient S as function of the carrier density n. (c) Power factor $S^2\sigma/\tau$ as function of the chemical potential μ . (d) Power factor $S^2\sigma/\tau$ as function of the carrier density n.

Figure S4. Band dispersion relations calculated for (a) Rb₂Sb₄Se₈ and (b) Cs₂Sb₄Se₈.

Figure S5. The temperature dependence of the Seebeck coefficients S (upper panels) and the power factor $S^2\sigma/\tau$ (down panels) plots calculated for (a) $K_2Sb_4Se_8$, (b) $Rb_2Sb_4Se_8$, and (c) $Cs_2Sb_4Se_8$. The black, red, green, and blue circles refer to carrier concentration 1×10^{19} , 5×10^{19} , 1×10^{20} , and 5×10^{20} cm⁻³, respectively. The open and filled circles indicate hole- and electron-type carriers.