BIONIC LIQUID-BASED PRETREATMENT ENHANCES METHANE

PRODUCTION FROM AGAVE TEQUILANA BAGASSE

Jose A. Pérez-Pimienta^a, José P. A. Icaza-Herrera^b, Hugo O. Méndez-Acosta^b, Víctor González-Álvarez^b, Jorge A. Méndoza-Pérez^c, Jorge Arreola-Vargas^{d,*}

^a Department of Chemical Engineering, Universidad Autónoma de Nayarit, Tepic, Mexico

^b Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara,

Jalisco, México.

^c Department of Engineering in Environmental Systems, Instituto Politécnico Nacional,

Mexico City, Mexico

^d División de Procesos Industriales, Universidad Tecnológica de Jalisco, Guadalajara,

Jalisco, México.

*Corresponding author.

E-mail address: jorgearreolav85@gmail.com

Band	. · .	% Relative	
	Assignment	change	
900	Anti-symmetric out of plane ring stretch of amorphous cellulose	-2.1	
1027	C-O stretching in cellulose & hemicellulose	3.2	
1235	C-O stretching in lignin & hemicellulose	48.1	
1321	C=O stretching of calcium oxalate	13.8	
1375	C-H deformation in cellulose & hemicellulose	13.9	
1622	C-O stretching of calcium oxalate	42.9	
1745	Carbonyl (C=O) stretching	68.1	
2900	C–H stretching (related to rupture of methyl/methylene group of cellulose)	-18.5	
3348	O–H stretching (indicates rupture of cellulose hydrogen bonds)	-6.8	

Table S1. Relative changes in ATB after IL pretreatment.

%Relative change = 100 * [(intensity of untreated solids - intensity of pretreated solids)/intensity of untreated solids]; where positive numbers indicate reduction

Table S2.	Elemental	content from	calcium	oxalate crystals	in untreated	and [Ch][Lys
pretreated	ATB.					

a .		% Mass	% Atomic mass	
Sample	Element	fraction	fraction	
	С	10.8	18.0	
Untreated ATB	0	50.3	62.7	
	Ca	38.9	19.3	
	С	13.5	23.0	
[Ch][Lys]-ATB	0	42.9	54.8	
	Ca	43.6	22.2	

1

2

oxalate crystals in pretreated ATB (C).

