Supporting Information

Simultaneous tuning of optical and electrical properties in multifunctional LiNbO₃ matrix upon doping with Eu³⁺ ion

Nimai Pathak^a*, Partha Sarathi Ghosh^b, Sumanta Mukherjee^c, Balaji Prasad Mandal^d

^a Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India ^b Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085,India

^cFuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India ^d Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India

> *Email: <u>*nmpathak4@gmail.com, nimai@barc.gov.in*</u> Telephone- +91-22-25590715/0636 Fax- +91-22-25405151

1.0. Instrumentation:

All the compounds were characterized with a rotating anode based powder X-ray diffractometer procured from Rigaku, Japan using CuK_{α} (λ = 1.5406 and 1.5444Å) monochromatic radiation. For FTIR study, a Platinum ATR (by Bruker alpha, Single reflection Diamond crystal, all reflective, gold coated optics, no fragile composite material construction) within the spectral range 5000-500 cm⁻¹ was used. Ferroelectric properties were investigated by using aix ACCT's TF analyser 2000. PL study has been carried out using an Edinburgh CD-920 unit equipped with M 300 monochromators and the data acquisition and analysis were carried with the help of F-900 software provided by Edinburgh Analytical Instruments, UK. The lifetime study was carried out based on the well established Time-correlated single-photon counting (TCSPC) technique.

2.0. DFT calculation methodology

Electronic structure calculations of ideal LiNbO₃, ferroelectric LiNbO₃ structure with oxygen, Li, Nb and antisite defects structures and as well as Eu doping in LiNbO₃ (LNO) were performed using a spin-polarized plane wave based density functional theory (DFT) simulations as implemented in Vienna Ab-intio Simulation package (VASP) **[1, 2]**. Projector augmented wave (PAW) potentials **[3]** were used to describe electron-ion interactions which includes the valence states of Li ($2s^2 2p^1 - 3$ valence electrons), Nb ($4s^24p^65s^24d^3 - 13$ valence electrons), O ($2s^22p^4 - 6$ valence electrons) and Eu ($5s^2 5p^6 4f^7 6s^2 - 17$ valence electrons). Exchange-correlation potential was described through generalized gradient approximation (GGA) parameterized by Perdew-Burke-Ernzerhof (PBE) functional [4]. A 12x12x4 and 6x6x2 Monkhorst-Pack [5] k-space mesh was used for the brillouin zone integration for 30 atom unitcell and 120 atom supercell, respectively. A cutoff energy (E_{cut}) of 500 eV was used for the plane wave basis set throughout the simulation. The optimized E_{cut} and k-point meshes used for the simulations ensure convergence of total energy to within a precision 0.01 meV/atom for ideal and defective unit-cell/supercell. Conjugate gradient algorithm was used to optimized volumes (or lattice parameter) and atomic positions in ideal/defective supercells until the residual forces and stress in the equilibrium geometry were of the order of 0.005 eV/Å and 0.01GPa, respectively. The final calculations of total electronic energy and density of states (DOS) were performed using the tetrahedron method with Blöchl corrections [6].

- 1. G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 2. G. Kresse, J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 3. P.E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 4. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. lett., 1996, 77, 3865.
- 5. H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 1976, 13(12), 5188.
- 6. P.E. Blöchl, O. Jepsen, O.K. Andersen, Physic. Rev. B, 1994, 49(23), 16223.

Figure S1: Luminescence decay time profile of undoped LNO: Eu³⁺ at $\lambda_{ex} = 230$ nm with (a) $\lambda_{em} = 380$ nm , b) $\lambda_{em} = 440$ nm and c) $\lambda_{em} = 540$ nm

Figure S2. Defect related impurity states inside the band gap of LNO