Supporting Information

Fabrication of magnetic ternary ZnFe2O4/TiO2/RGO Z‑Scheme system with efficient photocatalytic activity and easy recyclability

Yuwei Sun a,b, Jiashuang Lei b, Yizhu Wang b, Qian Tang b, Chunli Kang*,

a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China.

b College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, Jilin, China.

Preparation of GO

GO was synthesized by modified Hummer's method [1]. Briefly, 1 g graphite powder, 0.5 g NaNO₃ and 23 mL H₂SO₄ were mixed by stirring for 0.5 h at 0 °C. 3 g KMnO₄ was slowly added to the mixture with stirring under 15 \degree C. And then the mixture was stirred for another 0.5 h at 35 °C. Subsequently, 46 mL DI water was added into the mixture and further stirred for 0.5h at 98 °C. Later, 100 mL DI water and 10 mL H_2O_2 were added into the mixture followed by stirring. The color of the mixture was changed to yellowish. Then GO was washed with HCl and DI water for several times. The purified solid was dried by [freezer](javascript:;) [dryer](javascript:;) (-56 °C for 24 h).

Figure S1 SEM image of GO

The calculation of E_g , E_{VB} and E_{CB} of the prepared samples

The band gap energies of ZnFe_2O_4 and TiO_2 can be calculated by the following formula:

$$
ahv = A (hv - E_g)^{n/2}
$$
 (1)

The α is the absorption coefficient, ν is the light frequency, A is a constant and E_g is the band-gap energy. The n values of $TiO₂$ and ZnFe₂O₄ are 4 and 1, respectively [2,3]. As illustrated in Fig. 2b, according to formula (1), the E_g of TiO₂ and ZnFe₂O₄ can be calculated as 2.95 eV and 1.91 eV, respectively. Therefore, the band positions of $TiO₂$ and ZnFe_2O_4 were calculated by formulas (2) and (3):

$$
E_{VB} = X - E^e + 0.5E_g \tag{2}
$$

$$
E_{CB} = E_{VB} - E_g \tag{3}
$$

The E_{VB} is the valence band edge potential, E_{CB} is the conduction band edge potential, *X* is the electronegativity of the semiconductor (for TiO₂ = 5.81 eV [4] and for ZnFe₂O₄ $= 5.05$ eV [5]), E^e is the energy of free electrons on the hydrogen scale (border on 4.5) eV). Acorrding to formula (2) and (3), the calculated E_{VB} and E_{CB} of TiO₂ are 2.785 eV and -0.165 eV, respectively. And for ZnFe_2O_4 , E_{VB} and E_{CB} are 1.505 eV and -0.405 eV, respectively.

Figure S2 Calculation on the band gap energies of TR, ZTR 1, ZTR 3 and ZTR 5 composites

Furthermore, we [calculated](javascript:;) the Kubelka-Munk functions of versus the light energy of TR, ZTR 1, ZTR 3 and ZTR 5 composites, the results are shown in Fig. S2 The band gap energy of TR, ZTR 1, ZTR 3 and ZTR 5 composites 2.87 eV, 2.06 eV, are 1.99 eV and 1.94 eV, respectively.

The EDS spectrum

Figure S3 shows EDS spectrum of the ZTR 3 composite as catalyst for photocatalytic degradation of *p*-Nitrophenol (*p*-NP). Elements C, O, Ti, Fe and Zn belong to RGO, $TiO₂$ and $ZnFe₂O₄$, suggesting the successful fabrication of the ternary composite.

Fig. S3 EDS spectrum of the ZTR 3 composite

The [active](javascript:;) [species](javascript:;) trapping experiments

The active species trapping experiments were carried [out](javascript:;) during photocatalytic reactions. [ammonium](javascript:;) [oxalate](javascript:;) (AO), 2-propanol (IPA) and 1, 4-benzoquinone (BQ) were used as the quencher of h^+ , \bullet OH and \bullet O₂⁻, respectively. In a typical experiment, AO (6 mmol/L), IPA (20 mmol/L) and BQ (0.2 mmol/L) were added into the *p*-NP solution before addition of the photocatalyst to scavenge the reactive species, respectively. The subsequent experiments were the same as the previous photocatalytic degradation experiments.

[References](javascript:;)

[1] A. A. Nada, H. R. Tantawy, M. A. Elsayed, M. Bechelany, M. E. Elmowafy, Solid State Sciences, **2018**, 78, 116-125.

[2] X. Lin, X. Y. Guo, W. L. Shi, F. Guo, G. B. Che, H. J. Zhai, Y. S. Yan, Q. W. Wang, Solid State

Sciences, **2018**, 78, 116-125.

[3] R. Tao, C. C. Zhao, C. L Shao, X. H. Li, X. W. Li, J. Zhang, S. Yang, Y. C. Liu, Materials Research Bulletin, **2018**, 104, 124-133.

[4] H. Khan, M. G. Rigamonti, G. S. Patience, D. C. Boffit, Applied Catalysis B: [Environmental,](https://www.sciencedirect.com/science/journal/09263373) **2018**, 226, 311-323.

[5] X. J. Chen, Y. Z. Dai, T. H. Liu, Catalysis Communications, **2015**, 71, 21-27.