Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 ## **Electronic Supplementary Material** ## RATIOMETRIC TEMPERATURE MEASUREMENT USING NEGATIVE THERMAL QUENCHING OF INTRINSIC BiFeO₃ SEMICONDUCTOR NANOPARTICLES Željka Antić*,a, K. Prashanthi*,b, Sanja Kuzmana, Jovana Perišaa, Zoran Ristića, V.R. Palkarc and Miroslav D. Dramićanina ^aUniversity of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, Belgrade, Serbia ^bUniversity of Alberta, Department of Chemical & Materials Engineering, Edmonton, Canada ^cIndian Institute of Technology Bombay (IIT-B), Mumbai, India E-mail: zeljkaa@gmail.com, kovur@ualberta.ca ## X-Ray Photoelectron Spectroscopy (XPS) The X-Ray Photoelectron Spectroscopy (XPS) measurements of BFO NPs were performed on AXIS 165 spectrometer (Kratos Analytical). The survey scans were collected for binding energy spanning from 1000 eV to 0 with an analyzer pass energy of 160 eV and a step of 0.4 eV. For the high-resolution spectra, the pass-energy was 20 eV with a step of 0.1 eV. Electron flood neutralizer was applied to compensate for sample charging. The survey spectrum of pure BFO NPs (Figure S1a) confirms the presence of Bi, Fe, and O elements. The main peak at \sim 529 eV is attributed to the cation oxygen bonds. The peak at \sim 532 eV corresponds to the presence of oxygen vacancies. The presence of mixed-valence states Fe³⁺ and Fe²⁺ in BFO NPs was revealed by XPS spectra (Figure S1b) which shows two peaks \sim 710 eV and 724 eV indicating that Fe is dominantly in 3+ state. Further, due to the different d orbital electron configuration, the satellite peaks at 8 eV above these peaks indicate the presence of both Fe²⁺ and Fe³⁺ cations. The presence of mixed states is an indicative of the presence of oxygen vacancies (defect states) in the sample. Figure S1 XPS spectra of pure BFO NPs showing: a) the survey spectrum and b) the presence of mixed Fe^{3+} and Fe^{2+} valence states