## Application of Temperature-Controlled Chiral Hybrid Structures Constructed From Copper(II)-Monosubstituted Keggin Polyoxoanions and Copper(II)-Organoamine Complexes in Enantioselective Sensing of Tartaric Acid

Mu-Xiu Yang,<sup>†</sup> Meng-Jie Zhou,<sup>†</sup> Jia-Peng Cao,<sup>†</sup> Ye-Min Han,<sup>†</sup> Ya-Lin Hong,<sup>†</sup> and Yan Xu<sup>\*,†</sup>

<sup>†</sup>College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China

## 1. Crystal Structures



**Fig. S1** (a-d) The coordination mode of Cu1, Cu 2, Cu 3, Cu4. (e) The ball-and-stick representation of L-1. For clarity, H atoms and water molecules are omitted.



Fig. S2 Ball-stick and polyhedron view of the 1D leftt-handed chain in L-1.



Fig. S3 View of 2D supramolecular chiral sheet in L-1, showing the hydrogenbonding interactions (N-H $\cdots$ O) between the terminal oxygen atoms of polyoxoanions and organic molecules.



Fig. S4 View of 3D supramolecular chiral framework in L-1, showing the hydrogen-

bonding interactions (N-H $\cdots$ O) between the terminal oxygen atoms of polyoxoanions and organic molecules.



2. IR

Fig. S5 The IR spectrum of compound 1.



Fig. S6 The IR spectrum of compound 2.

3. TG



Fig. S7 TGA curve of compound 1.



Fig. S8 TGA curve of compound 2.

**TG analysis.** The TG curve of compound **1** is shown in Fig, S7. The first weight loss 2.50 % (calc. 2.65 %) occurred in the range of 25 - 170 °C is associated with the remove of 5 lattice H<sub>2</sub>O. In the range of 170 - 520 °C, 4 organic ligands ethylenediamine and 4 coordinated H<sub>2</sub>O are decomposed with the loss of 9.64 % (calc. 9.20 %). In the range of 520 - 700 °C, the weight loss 3.43 % is attributed to the loss of 1 organic ligand ethylenediamine and the thermal decomposition of the main structure.

Thermal analysis of **2** can be viewed in Fig S8. The first weight loss 3.75 % (calc. 3.67 %) occurred in the range of 25 - 230 °C indicates the release of 2.5 lattice H<sub>2</sub>O,

1 coordinated H<sub>2</sub>O and 1 organic ligand ethylenediamine. In the range of 230 - 480 °C, 4 organic ligands ethylenediamine are decomposed with the loss of 7.70 % (calc. 7.16 %). In the range of 480 - 570 °C, 1 organic ligands ethylenediamine is decomposed with the loss of 1.85 % (calc. 1.79 %). In the range of 570 - 700 °C, the weight loss 1.85 % is attributed to the thermal decomposition of the main structure. Assuming that the difference corresponds to the moist crystals exposed to air.

4. XRD



Fig. S9 The XRD patterns of compound 1 under different conditions, Simulated (black), experimental (red).



Fig. S10 The XRD patterns of compound 2 under different conditions, Simulated (black), experimental (red).

## 5. Nonlinear Optical properties



**Fig S11** The open aperture Z-scan data of **D-1**. The dots are the experimental data and the solid curve represents the theoretical data, which is modified by the equations (1), (2), (3).



Fig S12. The Z-scan data for L-1 in water, obtained under an open aperture configuration.

**Nonlinear Optical Measurement.** Third-order NLO properties of **D-1** and **L-1** are investigated by the open-aperture Z-scan in dimethyl formamide at a concentration of  $1.0 \times 10^{-3}$  mol/L for **D-1** ( $1.0 \times 10^{-3}$  mol/L for **L-1**). Chameleon II femtosecond laser pulse and Ti : 95 sapphire systems (740 nm, 80 Hz, 140 fs) were applied to measure third-order nonlinear optics (NLO) properties. Two-photon absorption (TPA) values of **D-1** and **L-1** were measured by the open-aperture Z-scan technique.<sup>1</sup> The nonlinear

absorption coefficient  $\beta$  and the molecular 2PA cross section  $\sigma$  can be determined by equations (1), (2), (3)<sup>2</sup>:

$$T(z,s = 1) = \sum_{m=0}^{\infty} \frac{\left[-q_0(z)\right]^m}{(m+1)^{3/2}} \quad for |q_0| < 1 \quad (1)$$
$$q_0(z) = \frac{\beta I_0 L_{eff}}{1+x^2} \tag{2}$$

Where  $x = \frac{z}{z_0}$ ,  $z_0 = \pi \omega_0^2 / \lambda$  is the diffraction length of the beam, where  $\omega_0$  is the spot size at the focus,  $\lambda$  is the wavelength of the beam, and z is the sample position.  $I_0$  is the input intensity at the focus z = 0 and equals the input energy divided by  $\pi \omega_0^2$ ,  $L_{eff} = (1 - e^{-\alpha L})/\alpha$  is the effective length, in which  $\alpha$  is the linear absorption coefficient and L is the sample length. By using the above equations, we obtain the nonlinear absorption coefficient  $\beta$ . Furthermore, the molecular 2PA cross section  $\sigma$  can be determined by the following relationship:

$$\sigma = \frac{h\nu\beta}{N_A}d \times 10^{-3} \tag{3}$$

Here, *h* is the Planck's constant, *v* is the frequency of input intensity,  $N_A$  is the Avogadro's constant, and *d* is the concentration of the compound.

| compound <b>D-1</b> | calculated | compound L-1    | calculated |   |
|---------------------|------------|-----------------|------------|---|
| Cu <sub>1</sub>     | 1.997      | Cu <sub>1</sub> | 1.960      |   |
| Cu <sub>2</sub>     | 1.759      | Cu <sub>2</sub> | 1.738      |   |
| Cu <sub>3</sub>     | 1.957      | Cu <sub>3</sub> | 1.980      |   |
| Cu <sub>4</sub>     | 1.770      | Cu <sub>4</sub> | 1.907      |   |
|                     |            |                 |            | 1 |

Table S1. Bond valence sum for compound D-1 and L-1.

Table S2. Selected Bond Distances (Å) and angles (°) for compound D-1.

| Cu(1)-O(7)  | 1.95(2) | Cu(3)-N(2) | 1.95(4) |
|-------------|---------|------------|---------|
| Cu(1)-O(15) | 1.97(2) | Cu(3)-N(1) | 1.96(3) |

| Cu(1)-O(26) 1.99(3) $Cu(3)-N(4)$ 2.00(5)                |  |
|---------------------------------------------------------|--|
| Cu(1)-O(8) 2.00(3) Cu(3)-N(3) 2.04(3)                   |  |
| Cu(1)-O(40) <sup>a</sup> 2.40(3) Cu(4)-N(10) 2.01(3)    |  |
| Cu(1)-O(19)#1 <sup>a</sup> 2.40(2) Cu(4)-N(6) 2.04(4)   |  |
| Cu(2)-N(8) 1.98(4) Cu(4)-N(9) 2.05(4)                   |  |
| Cu(2)-O(2W) 2.03(3) Cu(4)-N(5) 2.06(3)                  |  |
| Cu(2)-O(5W) 2.04(4) Cu(4)-O(1W) 2.34(3)                 |  |
| Cu(2)-N(7) 2.05(4) O(19)-Cu(1)#2 2.40(2)                |  |
| Cu(2)-O(38) <sup>a</sup> 2.44(3)                        |  |
| O(7)-Cu(1)-O(15) 84.8(10) N(8)-Cu(2)-O(38) 91.3(13)     |  |
| O(7)-Cu(1)-O(26) 91.2(11) O(2W)-Cu(2)-O(38) 91.4(13)    |  |
| O(15)-Cu(1)-O(26) 166.5(11) O(5W)-Cu(2)-O(38) 105.2(13) |  |
| O(7)-Cu(1)-O(8) 167.0(11) N(7)-Cu(2)-O(38) 85.3(14)     |  |
| O(15)-Cu(1)-O(8) 92.6(10) N(2)-Cu(3)-N(1) 82.1(14)      |  |
| O(26)-Cu(1)-O(8) 88.5(11) N(2)-Cu(3)-N(4) 96.5(18)      |  |
| O(7)-Cu(1)-O(40) 92.3(10) N(1)-Cu(3)-N(4) 176.4(19)     |  |
| O(15)-Cu(1)-O(40) 92.2(9) N(2)-Cu(3)-N(3) 178.1(15)     |  |
| O(26)-Cu(1)-O(40) 75.1(10) N(1)-Cu(3)-N(3) 97.3(13)     |  |
| O(8)-Cu(1)-O(40) 75.1(10) N(4)-Cu(3)-N(3) 84.2(17)      |  |
| O(7)-Cu(1)-O(19)#1 96.0(9) N(10)-Cu(4)-N(6) 96.6(13)    |  |
| O(15)-Cu(1)-O(19)#1 103.7(9) N(10)-Cu(4)-N(9) 82.0(13)  |  |
| O(26)-Cu(1)-O(19)#1 89.5(10) N(6)-Cu(4)-N(9) 166.8(15)  |  |
| O(8)-Cu(1)-O(19)#1 97.0(10) N(10)-Cu(4)-N(5) 178.1(15)  |  |
| O(40)-Cu(1)-O(19)#1 162.7(9) N(6)-Cu(4)-N(5) 83.6(13)   |  |
| N(8)-Cu(2)-O(2W) 175.7(18) N(9)-Cu(4)-N(5) 98.2(14)     |  |
| N(8)-Cu(2)-O(5W) 94.4(16) N(10)-Cu(4)-O(1W) 92.6(12)    |  |
| O(2W)-Cu(2)-O(5W) 81.7(17) N(6)-Cu(4)-O(1W) 95.5(13)    |  |
| N(8)-Cu(2)-N(7) 85.2(16) N(9)-Cu(4)-O(1W) 97.6(13)      |  |
| O(2W)-Cu(2)-N(7) 98.3(18) N(5)-Cu(4)-O(1W) 85.5(13)     |  |
| O(5W)-Cu(2)-N(7) 169.5(17)                              |  |

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z; #2 x-1,y,z <sup>a</sup> Due to the axial extension of the Jahn-Teller effect of copper(II) ion, Cu1-O19 is considered as a usual coordination bond in this article.

| Cu(1)-O(26)                | 1.95(3)   | Cu(3)-N(1)        | 1.96(4)   |
|----------------------------|-----------|-------------------|-----------|
| Cu(1)-O(8)                 | 1.96(3)   | Cu(3)-N(4)        | 1.97(6)   |
| Cu(1)-O(7)                 | 1.97(3)   | Cu(3)-N(2)        | 1.99(5)   |
| Cu(1)-O(15)                | 1.99(3)   | Cu(3)-N(3)        | 2.06(5)   |
| Cu(1)-O(40) <sup>a</sup>   | 2.41(3)   | Cu(4)-N(10)       | 1.97(5)   |
| Cu(1)-O(19)#1 <sup>a</sup> | 2.44(3)   | Cu(4)-N(5)        | 2.00(4)   |
| Cu(2)-N(8)                 | 2.00(4)   | Cu(4)-N(9)        | 2.04(4)   |
| Cu(2)-N(7)                 | 2.01(4)   | Cu(4)-N(6)        | 2.07(5)   |
| Cu(2)-O(5W)                | 2.02(6)   | Cu(4)-O(1W)       | 2.33(4)   |
| Cu(2)-O(2W)                | 2.07(4)   | O(19)-Cu(1)#2     | 2.44(3)   |
| O(26)-Cu(1)-O(8)           | 86.5(13)  | N(7)-Cu(2)-O(2W)  | 95.4(16)  |
| O(26)-Cu(1)-O(7)           | 90.1(12)  | O(5W)-Cu(2)-O(2W) | 85(2)     |
| O(8)-Cu(1)-O(7)            | 168.7(13) | N(1)-Cu(3)-N(4)   | 177(2)    |
| O(26)-Cu(1)-O(15)          | 164.0(12) | N(1)-Cu(3)-N(2)   | 87.7(19)  |
| O(8)-Cu(1)-O(15)           | 92.2(12)  | N(4)-Cu(3)-N(2)   | 95(2)     |
| O(7)-Cu(1)-O(15)           | 88.1(12)  | N(1)-Cu(3)-N(3)   | 89.9(18)  |
| O(26)-Cu(1)-O(40)          | 73.7(11)  | N(4)-Cu(3)-N(3)   | 88(2)     |
| O(8)-Cu(1)-O(40)           | 76.0(12)  | N(2)-Cu(3)-N(3)   | 174.1(18) |
| O(7)-Cu(1)-O(40)           | 92.8(11)  | N(10)-Cu(4)-N(5)  | 175(2)    |
| O(15)-Cu(1)-O(40)          | 90.5(10)  | N(10)-Cu(4)-N(9)  | 83.7(19)  |
| O(26)-Cu(1)-O(19)#1        | 89.0(12)  | N(5)-Cu(4)-N(9)   | 97.6(18)  |
| O(8)-Cu(1)-O(19)#1         | 96.5(13)  | N(10)-Cu(4)-N(6)  | 95.1(19)  |
| O(7)-Cu(1)-O(19)#1         | 94.1(12)  | N(5)-Cu(4)-N(6)   | 84.9(19)  |
| O(15)-Cu(1)-O(19)#1        | 107.0(11) | N(9)-Cu(4)-N(6)   | 165(2)    |
| O(40)-Cu(1)-O(19)#1        | 161.4(10) | N(10)-Cu(4)-O(1W) | 87.4(18)  |
| N(8)-Cu(2)-N(7)            | 84.5(16)  | N(5)-Cu(4)-O(1W)  | 87.6(17)  |
| N(8)-Cu(2)-O(5W)           | 96(2)     | N(9)-Cu(4)-O(1W)  | 98.9(16)  |
| N(7)-Cu(2)-O(5W)           | 173.0(19) | N(6)-Cu(4)-O(1W)  | 95.8(16)  |

Table S3. Selected Bond Distances (Å) and angles (°) for compound L-1

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z; #2 x+1,y,z

| $C_{1}(1) O(74)$ | 1.00(2)   | G(f) $N(11)$ | 2.00(2)   |
|------------------|-----------|--------------|-----------|
| Cu(1)-O(74)      | 1.88(2)   | Cu(6)-N(11)  | 2.00(3)   |
| Cu(1)-O(49)      | 1.938(18) | Cu(6)-N(12)  | 2.03(2)   |
| Cu(1)-O(60)      | 1.940(17) | Cu(7)-N(16)  | 2.03(3)   |
| Cu(1)-O(36)      | 1.955(16) | Cu(7)-N(13)  | 2.04(3)   |
| Cu(1)-O(19)      | 1.96(2)   | Cu(7)-N(15)  | 2.06(2)   |
| Cu(1)-O(41)      | 2.390(18) | Cu(7)-N(14)  | 2.06(3)   |
| Cu(2)-O(14)      | 1.948(19) | Cu(7)-O(2W)  | 2.35(2)   |
| Cu(2)-O(23)      | 1.953(16) | Cu(8)-N(6)   | 1.99(3)   |
| Cu(2)-O(78)#1    | 1.98(2)   | Cu(8)-N(8)   | 2.01(3)   |
| Cu(2)-O(56)      | 1.986(15) | Cu(8)-N(5)   | 2.01(3)   |
| Cu(2)-O(57)      | 1.991(18) | Cu(8)-N(7)   | 2.04(3)   |
| Cu(2)-O(51)      | 2.383(18) | Cu(8)-O(59)  | 2.380(19) |
| Cu(3)-O(20)      | 1.899(19) | Cu(9)-N(24)  | 1.96(3)   |
| Cu(3)-O(71)      | 1.958(18) | Cu(9)-N(23)  | 1.98(3)   |
| Cu(3)-O(32)      | 1.971(19) | Cu(9)-N(21)  | 2.01(4)   |
| Cu(3)-O(74)      | 1.97(2)   | Cu(9)-N(22)  | 2.02(2)   |
| Cu(3)-O(77)      | 2.009(19) | Cu(9)-O(3W)  | 2.29(2)   |
| Cu(3)-O(5)       | 2.344(17) | Cu(10)-N(20) | 2.01(3)   |
| Cu(4)-O(55)      | 1.941(19) | Cu(10)-N(19) | 2.02(3)   |
| Cu(4)-O(7)       | 1.947(18) | Cu(10)-N(18) | 2.04(3)   |
| Cu(4)-O(44)      | 1.947(19) | Cu(10)-N(17) | 2.07(4)   |
| Cu(4)-O(45)      | 1.970(16) | Cu(5)-N(3)   | 1.96(2)   |
| Cu(4)-O(78)      | 2.10(2)   | Cu(5)-N(4)   | 2.01(2)   |
| Cu(4)-O(37)      | 2.403(18) | Cu(5)-N(2)   | 2.02(2)   |
| Cu(6)-N(9)       | 2.00(3)   | Cu(5)-N(1)   | 2.02(2)   |
| Cu(6)-N(10)      | 2.00(3)   | Cu(5)-O(39)  | 2.418(19) |

Table S4. Selected Bond Distances (Å) and angles (°) for compound 2.

| O(74)-Cu(1)-O(49)   | 100.3(8) | O(7)-Cu(4)-O(37)  | 73.2(6)   |
|---------------------|----------|-------------------|-----------|
| O(74)-Cu(1)-O(60)   | 99.2(8)  | O(44)-Cu(4)-O(37) | 73.8(7)   |
| O(49)-Cu(1)-O(60)   | 89.4(7)  | O(45)-Cu(4)-O(37) | 88.9(6)   |
| O(74)-Cu(1)-O(36)   | 99.9(8)  | O(78)-Cu(4)-O(37) | 168.8(7)  |
| O(49)-Cu(1)-O(36)   | 159.7(7) | N(9)-Cu(6)-N(10)  | 83.5(11)  |
| O(60)-Cu(1)-O(36)   | 89.6(7)  | N(9)-Cu(6)-N(11)  | 173.6(11) |
| O(74)-Cu(1)-O(19)   | 98.1(8)  | N(10)-Cu(6)-N(11) | 95.5(11)  |
| O(49)-Cu(1)-O(19)   | 84.9(8)  | N(9)-Cu(6)-N(12)  | 97.4(10)  |
| O(60)-Cu(1)-O(19)   | 162.5(7) | N(10)-Cu(6)-N(12) | 168.7(10) |
| O(36)-Cu(1)-O(19)   | 90.1(8)  | N(11)-Cu(6)-N(12) | 84.8(10)  |
| O(74)-Cu(1)-O(41)   | 169.7(8) | N(16)-Cu(7)-N(13) | 173.7(12) |
| O(49)-Cu(1)-O(41)   | 87.1(7)  | N(16)-Cu(7)-N(15) | 82.8(11)  |
| O(60)-Cu(1)-O(41)   | 73.4(6)  | N(13)-Cu(7)-N(15) | 97.0(11)  |
| O(36)-Cu(1)-O(41)   | 73.2(6)  | N(16)-Cu(7)-N(14) | 94.7(12)  |
| O(19)-Cu(1)-O(41)   | 89.8(7)  | N(13)-Cu(7)-N(14) | 84.0(11)  |
| O(14)-Cu(2)-O(23)   | 85.2(7)  | N(15)-Cu(7)-N(14) | 165.9(12) |
| O(14)-Cu(2)-O(78)#1 | 101.7(8) | N(16)-Cu(7)-O(2W) | 98.8(11)  |
| O(23)-Cu(2)-O(78)#1 | 104.0(8) | N(13)-Cu(7)-O(2W) | 87.5(10)  |
| O(14)-Cu(2)-O(56)   | 161.1(7) | N(15)-Cu(7)-O(2W) | 98.7(9)   |
| O(23)-Cu(2)-O(56)   | 89.9(7)  | N(14)-Cu(7)-O(2W) | 95.4(10)  |
| O(78)#1-Cu(2)-O(56) | 97.2(8)  | N(6)-Cu(8)-N(8)   | 175.1(12) |
| O(14)-Cu(2)-O(57)   | 91.9(7)  | N(6)-Cu(8)-N(5)   | 82.5(11)  |
| O(23)-Cu(2)-O(57)   | 160.1(7) | N(8)-Cu(8)-N(5)   | 96.0(11)  |
| O(78)#1-Cu(2)-O(57) | 95.9(8)  | N(6)-Cu(8)-N(7)   | 97.9(10)  |
| O(56)-Cu(2)-O(57)   | 86.5(7)  | N(8)-Cu(8)-N(7)   | 83.3(9)   |
| O(14)-Cu(2)-O(51)   | 87.4(7)  | N(5)-Cu(8)-N(7)   | 175.3(12) |
| O(23)-Cu(2)-O(51)   | 86.0(6)  | N(6)-Cu(8)-O(59)  | 84.3(9)   |
| O(78)#1-Cu(2)-O(51) | 166.9(7) | N(8)-Cu(8)-O(59)  | 100.1(9)  |
| O(56)-Cu(2)-O(51)   | 74.0(6)  | N(5)-Cu(8)-O(59)  | 81.5(10)  |
| O(57)-Cu(2)-O(51)   | 74.2(6)  | N(7)-Cu(8)-O(59)  | 103.2(9)  |

| O(20)-Cu(3)-O(71) | 162.9(8) | N(24)-Cu(9)-N(23)  | 84.4(12)  |
|-------------------|----------|--------------------|-----------|
| O(20)-Cu(3)-O(32) | 87.2(7)  | N(24)-Cu(9)-N(21)  | 97.8(14)  |
| O(71)-Cu(3)-O(32) | 90.8(8)  | N(23)-Cu(9)-N(21)  | 176.4(13) |
| O(20)-Cu(3)-O(74) | 97.2(8)  | N(24)-Cu(9)-N(22)  | 172.0(13) |
| O(71)-Cu(3)-O(74) | 100.0(8) | N(23)-Cu(9)-N(22)  | 95.8(10)  |
| O(32)-Cu(3)-O(74) | 97.2(8)  | N(21)-Cu(9)-N(22)  | 81.6(13)  |
| O(20)-Cu(3)-O(77) | 90.4(8)  | N(24)-Cu(9)-O(3W)  | 90.6(12)  |
| O(71)-Cu(3)-O(77) | 87.7(8)  | N(23)-Cu(9)-O(3W)  | 90.6(11)  |
| O(32)-Cu(3)-O(77) | 166.5(8) | N(21)-Cu(9)-O(3W)  | 92.3(13)  |
| O(74)-Cu(3)-O(77) | 96.3(9)  | N(22)-Cu(9)-O(3W)  | 97.4(10)  |
| O(20)-Cu(3)-O(5)  | 87.2(7)  | N(20)-Cu(10)-N(19) | 83.0(12)  |
| O(71)-Cu(3)-O(5)  | 75.8(7)  | N(20)-Cu(10)-N(18) | 95.3(13)  |
| O(32)-Cu(3)-O(5)  | 89.8(7)  | N(19)-Cu(10)-N(18) | 176.3(13) |
| O(74)-Cu(3)-O(5)  | 171.9(8) | N(20)-Cu(10)-N(17) | 178.2(14) |
| O(77)-Cu(3)-O(5)  | 76.8(7)  | N(19)-Cu(10)-N(17) | 95.3(15)  |
| O(55)-Cu(4)-O(7)  | 90.5(8)  | N(18)-Cu(10)-N(17) | 86.4(15)  |
| O(55)-Cu(4)-O(44) | 160.7(7) | N(3)-Cu(5)-N(4)    | 83.1(8)   |
| O(7)-Cu(4)-O(44)  | 89.5(8)  | N(3)-Cu(5)-N(2)    | 97.4(9)   |
| O(55)-Cu(4)-O(45) | 85.0(7)  | N(4)-Cu(5)-N(2)    | 178.0(10) |
| O(7)-Cu(4)-O(45)  | 161.8(7) | N(3)-Cu(5)-N(1)    | 164.9(10) |
| O(44)-Cu(4)-O(45) | 89.0(7)  | N(4)-Cu(5)-N(1)    | 94.9(9)   |
| O(55)-Cu(4)-O(78) | 96.4(8)  | N(2)-Cu(5)-N(1)    | 85.2(9)   |
| O(7)-Cu(4)-O(78)  | 96.3(8)  | N(3)-Cu(5)-O(39)   | 111.3(9)  |
| O(44)-Cu(4)-O(78) | 102.7(8) | N(4)-Cu(5)-O(39)   | 98.4(8)   |
| O(45)-Cu(4)-O(78) | 101.7(8) | N(2)-Cu(5)-O(39)   | 79.6(8)   |
| O(55)-Cu(4)-O(37) | 87.7(7)  | N(1)-Cu(5)-O(39)   | 83.8(8)   |

Symmetry transformations used to generate equivalent atoms: #1 x+1,-y+1/2,z+1/2; #2 x-1,-y+1/2,z-1/2

**Table S5**. Distances and angles  $[A, \circ]$  of hydrogen bonds for compound **D-1**.

| D–H···A       | d(D–H) | d(H····A) | $d(D \cdots A)$ | ∠D–H…A |
|---------------|--------|-----------|-----------------|--------|
| N5 U5C 022    | 0.80   | 2.2       | 2,00(5)         | 140    |
| N3 H3C····O25 | 0.89   | 2.2       | 3.00(3)         | 149    |
| N7 H7D…O36    | 0.89   | 2.17      | 2.99(6)         | 153    |
| N8 H8D…O15    | 0.89   | 2.21      | 3.06(5)         | 159    |
| N10 H10D…O7   | 0.89   | 2.46      | 3.06(4)         | 124    |
| N10 H10D…O26  | 0.89   | 2.25      | 3.09(5)         | 158    |

Table S6. Distances and angles [A,  $^{\circ}$  ] of hydrogen bonds for compound L-1.

| D−H…A        | d(D–H) | $d(H \cdots A)$ | $d(D \cdots A)$ | ∠D–H…A |
|--------------|--------|-----------------|-----------------|--------|
| N1 H1C…O8    | 0.89   | 2.12            | 2.92(6)         | 149    |
| N1 H1D…O10   | 0.89   | 2.27            | 3.07(6)         | 149    |
| N2 H2D…O5    | 0.89   | 2.13            | 2.94(6)         | 152    |
| N3 H3C⋯O10   | 0.89   | 2.46            | 3.20(6)         | 141    |
| N5 H5D…O23   | 0.89   | 2.17            | 3.01(7)         | 158    |
| N6 H6D…O36   | 0.89   | 2               | 2.86(6)         | 163    |
| N7 H7C⋯O36   | 0.89   | 2.15            | 3.00(5)         | 160    |
| N7 H7C⋯O37   | 0.89   | 2.55            | 3.18(4)         | 128    |
| N7 H7D…O30   | 0.89   | 2.47            | 3.27(6)         | 149    |
| N8 H8C…O15   | 0.89   | 2.18            | 3.03(7)         | 161    |
| N8 H8D…O12   | 0.89   | 2.24            | 3.08(6)         | 155    |
| N10 H10C…O26 | 0.89   | 2.2             | 3.06(7)         | 162    |
| N10 H10D…O31 | 0.89   | 2.53            | 3.32(7)         | 149    |

**Table S7**. Distances and angles [A,  $^{\circ}$  ] of hydrogen bonds for compound **2**.

| D–H···A    | d(D-H) | d(H···A) | d(D····A) | ∠D–H…A |
|------------|--------|----------|-----------|--------|
| N1 H1C…O21 | 0.89   | 2.26     | 3.07(3)   | 151    |
| N2 H2D…O3  | 0.89   | 2.5      | 3.23(3)   | 140    |

| N3 H3C…O3    | 0.89 | 2.5  | 3.17(3) | 132 |
|--------------|------|------|---------|-----|
| N3 H3C…O76   | 0.89 | 2.39 | 3.22(3) | 154 |
| N3 H3D…O48   | 0.89 | 2.6  | 3.17(3) | 123 |
| N4 H4C…O49   | 0.89 | 2.31 | 3.08(3) | 145 |
| N4 H4C…O74   | 0.89 | 2.5  | 3.21(3) | 136 |
| N4 H4D…O21   | 0.89 | 2.15 | 2.98(3) | 154 |
| N6 H6B…O68   | 0.89 | 2.11 | 2.96(3) | 159 |
| N7 H7C…O18   | 0.89 | 2.54 | 3.38(3) | 158 |
| N7 H7C…O68   | 0.89 | 2.48 | 3.18(3) | 135 |
| N7 H7D…O26   | 0.89 | 2.36 | 3.03(3) | 132 |
| N8 H8C…O23   | 0.89 | 2.5  | 3.24(3) | 141 |
| N8 H8D…O52   | 0.89 | 2.11 | 2.98(4) | 166 |
| N9 H9C…O22   | 0.89 | 2.47 | 3.30(3) | 155 |
| N9 H9C…O61   | 0.89 | 2.59 | 3.27(3) | 134 |
| N10 H10C…O35 | 0.89 | 2.15 | 2.95(3) | 148 |
| N10 H10D…O4  | 0.89 | 2.13 | 3.00(3) | 166 |
| N11 H11C…O77 | 0.89 | 2.34 | 3.17(4) | 156 |
| N11 H11D…O19 | 0.89 | 2.51 | 3.23(3) | 139 |
| N11 H11D⋯O36 | 0.89 | 2.26 | 3.06(3) | 149 |
| N12 H12C…O54 | 0.89 | 2.31 | 3.17(3) | 163 |
| N12 H12D…O8  | 0.89 | 2.08 | 2.87(3) | 148 |
| N13 H13D…O67 | 0.89 | 2.3  | 3.17(3) | 166 |
| N14 H14C…O65 | 0.89 | 2.29 | 3.16(4) | 164 |
| N14 H14D…O73 | 0.89 | 2.52 | 3.38(4) | 162 |
| N15 H15C…O76 | 0.89 | 2.38 | 3.24(3) | 163 |
| N15 H15D…O21 | 0.89 | 2.6  | 3.25(3) | 131 |
| N18 H18C…O17 | 0.89 | 2.33 | 3.19(4) | 164 |
| N19 H19C…O60 | 0.89 | 2.26 | 3.10(4) | 158 |
| N19 H19D…O32 | 0.89 | 2.42 | 3.24(4) | 153 |

| N20 H20D…O72 | 0.89 | 2.14 | 2.97(3) | 156 |
|--------------|------|------|---------|-----|
| N21 H21C…O61 | 0.89 | 2.1  | 2.91(4) | 152 |
| N21 H21D…O25 | 0.89 | 2.21 | 3.08(4) | 165 |
| N22 H22C…O33 | 0.89 | 1.94 | 2.82(3) | 166 |
| N22 H22D…O13 | 0.89 | 2.06 | 2.94(3) | 170 |
| N23 H23C…O53 | 0.89 | 2.35 | 3.20(3) | 160 |
| N23 H23D…O16 | 0.89 | 2.18 | 2.93(3) | 142 |
| N24 H24C…O61 | 0.89 | 2.33 | 3.18(4) | 161 |
| N24 H24D…O25 | 0.89 | 2.41 | 3.29(4) | 170 |

- (a) N. L. Toh, M. Nagarathinam and J. J. Vittal, *Angew. Chem. Int. Ed.*, 2005, 44, 2237-2241;
  (b) C. Hu and U. Englert, *Angew. Chem. Int. Ed.*, 2005, 44, 2281-2283;
  (c) T. Tahier and C. L. Oliver, *CrystEngComm*, 2017, 19, 3607-3618;
  (d) D. K. Kumar, D. A. Jose, A. Das and P. Dastidar, *Inorg. Chem.*, 2005, 44, 6933-6935.
- (a) M. C. Bernini, F. Gandara, M. Iglesias, N. Snejko, E. Gutierrez-Puebla, E. V. Brusau, G. E. Narda and M. A. Monge, *Chem. Eur. J.*, 2009, 15, 4896-4905; (b) P. Cui, L. Ren, Z. Chen, H. Hu, B. Zhao, W. Shi and P. Cheng, *Inorg. Chem.* 2012, 51, 2303-2310.