Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

+Supporting Information

Cobalt doped BiVO₄ with rich oxygen vacancies for efficient photoelectrochemical water oxidation

Guoquan Liu,^a Fei Li,*a Yong Zhu,^a Jiayuan Li^a and Licheng Sun^{ab}

^aState Key Laboratory of Fine Chemicals, DUT–KTH Joint Education and Research

Center on Molecular Devices, Dalian University of Technology, Dalian 116024, R. P.

China.

^bDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.

 $*Corresponding \ Author, \ E-mail: \ lifei@dlut.edu.cn$

Experiment section

Chemical reagents and Instruments

Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O₂, \geq 98.0%), Vanadium(IV)oxy Acetylacetonate (VO(acac)₂, 98%), were purchased from Aladdin. p-Benzoquinone (\geq 98.0%) and Cobaltous chloride (CoCl₂, 99.5%) was supplied by Sinopharm Chemical Reagent Co., Ltd. Potassium iodide (KI, \geq 98.5%) was purchased from Tianjin Guangfu Development Co., LTD. High purity water (18.2 M Ω /cm) supplied by a Milli-Q system (Millipore, Direct-Q 3 UV) was used in all experiments. FTO substrates were purchased from Dalian Heptachroma SolarTech Co., Ltd. (thickness of ~2.2 mm, transmittance of > 90%, resistance < 15 Ω /cm²). Before using, the FTO substrates were ultrasonically cleaned in deionized water, ethanol, and acetone, respectively. All other reagents were commercially available and used as received.

UV-vis diffuse reflectance spectrum (DRS) of the sample was measured using a Shimadzu UV-2000 spectrophotometer. Electrochemical measurements were taken with a CHI760E electrochemical potentiostat (Shanghai Chenhua, China). X-ray Diffraction (XRD) was collected with a SmartLab 9KW diffractometer using Cu Kα radiation (154.1 nm). Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) mapping of the electrodes were conducted with a Hitachi SU8220 instrument with an accelerating voltage of 5.0 kV. Transmission Electron Microscope (TEM) was carried out by Thermo Scientific TF30 instrument X-ray photoelectron

spectroscopy (XPS) measurement was performed on a Thermo ESCALAB XI+ instrument using 150 W K α radiate.

Preparation of BiVO₄ and Co-BiVO₄ photoanode

BiVO₄ and Co-BiVO₄ films were prepared by electrodeposition. First, the 2 mmol of Bi(NO₃)₃ was dissolved in 50 mL of a pH 1.7 HNO₃ solution. After the mixture was stirred for 5 min, 20 mmol of KI was added to the solution at room temperature and the mixture was stirred for another 5 min. This solution was mixed with 20 mL of absolute ethanol containing 4.6 mmol of p-benzoquinone and was vigorously stirred for a few minutes. Then cobaltous chloride dissolved in the solution forms a (0, 2.5, 5, 7.5, 10, 12.5mg/ml) Co²⁺ precursor solution. A typical three-electrode cell containing a fluorine-doped tin oxide (FTO) working electrode, a saturated Ag/AgCl reference electrode, and a Pt wire counter electrode were used for electrodeposition. Electrodeposition was carried out at constant potential -0.1 V vs. Ag/AgCl for 3 min to obtain the BiOI and Co-BiOI electrode, which was rinsed with deionized water and dried in ambient air. The BiVO₄ and Co-doped BiVO₄ film were prepared by placing 30 µL dimethyl sulfoxide (DMSO) solution containing 0.2 M vanadyl acetylacetonate (VO(acac)₂) on the BiOI electrodes, followed by heating in a muffle furnace at 450 °C (ramping rate 2 °C/min) for 2 h. After they cooled to room temperature, the electrodes were soaked in 1 M NaOH solution for 30 min to remove the excess V₂O₅. The obtained pure BiVO₄, 2.5Co-BiVO₄, 5Co-BiVO₄, 7.5Co-BiVO₄, 10Co-BiVO₄ and 12.5Co-BiVO₄ electrodes were rinsed with deionized water and dried in air.

Electrochemical and photoelectrochemical Measurements

Photoelectrochemical and electrochemical performances of as-prepared anodes (BiVO₄, Co-BiVO₄) were collected in a standard three-electrode system, with the anodes as the working electrodes, a platinum wire as the counter electrode, and Ag/AgCl as the reference electrode controlled by a CHI 760E potentiostat. The simulated solar illumination was obtained by passing light from a 300 W xenon lamp equipped with an AM 1.5 filter, and the power intensity of the incident light was calibrated to 100 mW/cm² using a THORLABS PM100D S121C photodetector. The 0.5 M sodium borate buffer solution (pH 9.3) was used as the electrolyte, which is obtained by dissolving 0.5 mol of H₃BO₃ in 1L deionized water, followed by adding NaOH to adjust the pH to 9.3. The photocurrent was measured by linear sweep voltammetry with a scan rate of 10 mV/s. The recorded potential versus Ag/AgCl ($E_{Ag/AgCl}$) was converted against RHE using the Nernst equation ($E_{RHE} = E_{Ag/AgCl} + 0.197 + 0.059$ pH). The data were collected by back illumination.

Electrochemical impedance spectroscopy (EIS) of the as-prepared film electrodes was measured at 1.23 V vs. RHE in a frequency range of 0.1-100000 Hz with an amplitude of 5 mV in 0.5 M sodium borate buffer solution (pH 9.3) under 100mW/cm² irradiation. The measured EIS spectra were fitted by Zview software using the proposed equivalent circuit model. The incident photon-to-current conversion efficiency (IPCE) of as-prepared films was measured at 1.23 V vs. RHE in 0.5 M sodium borate buffer solution (pH 9.3) under irradiation of monochromatic light. Incident light power was

measured using a THORLABS PM100D S120VC photodetector. The IPCE at each wavelength was calculated by the following equation:

$$IPCE \ (\%) = \frac{1240 \times (J_{light} - J_{dark})}{\lambda \times P_{light}} \times 100\%$$

Where J is the photocurrent density (mA/cm²), P_{light} is the incident light power density (mW/cm²), and λ is the wavelength (nm) of the incident light.

The applied bias photon-to-current efficiency (ABPE) was calculated by the following equation:

$$ABPE(\%) = \frac{(J_{light} - J_{dark}) \times (1.23 - V_{bias})}{P_{light}} \times 100\%$$

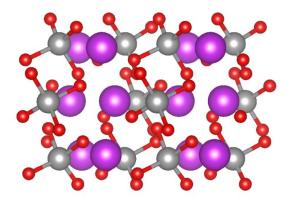
where J is the photocurrent density, V_{bias} is the applied potential, P_{light} is the incident light power density (mW/cm²).

The donor densities and flat band potential of BiVO₄ and Co-doped BiVO₄ films were investigated using the Mott-Schottky measurement at a frequency of 1 kHz in dark. The donor densities was determined using the following equation:

$$\frac{1}{C^2} = \frac{2}{e\varepsilon\varepsilon_0 N_{d[(V-V_f)-}} \frac{KT}{e}$$

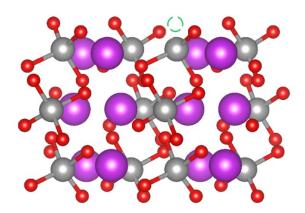
$$N_{d} = \frac{2}{e\varepsilon\varepsilon_{0}} \frac{d\left(\frac{1}{C^{2}}\right)}{d_{V}}$$

where C is the differential capacitance of the space-charge region, ε is the relative


dielectric constant of sample, ε_0 is the permittivity of vacuum, A is the surface area of sample, N_d is the concentration of charge carriers, V is the applied potential, V_f is the flat band potential, K is Boltzmann constant, T is temperature and e is the elemental charge.

The surface charge separation sufficiency (η_{surface}) was calculated using the equation:

$$\eta_{surface(100\%)} = \frac{J_{water}}{J_{sulfite}} \times 100\%$$


Calculations on the formation energies $(E_{\rm f})$ of oxygen vacancy and the energy of adsorption of $H_2{\rm O}$ molecule

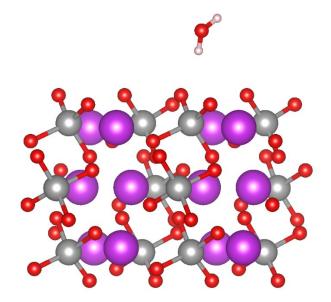
The formation energies of oxygen vacancy in BiVO₄ and Co-BiVO₄ (200) have been studied by means of periodic density functional calculations were conducted using the "Vienna *ab initio* simulation package" (VASP 5.4.1), applying the generalized gradient correlation functional, which were calculated as:

The total energy of BiVO₄ structure:

$$E_{per} = -0.53425014E + 03 = -534.25 \text{ eV}$$

The energy of BiVO₄ with oxygen vacancy:

$$E_{tot} = -0.52648191E + 03 = -526.48 \text{ eV}$$


The energy of the O atom:

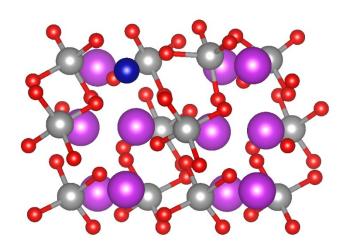
$$E_O = \frac{1}{2} \times (-8.84 \text{ eV}) = -4.42 \text{ eV}$$

The formation energy of oxygen vacancy:

$$E_f = E_{tot} - E_{per} + E_o = -526.48 \text{ eV} - (-534.25 \text{ eV}) + \frac{1}{2} \times (-8.84 \text{ eV})$$

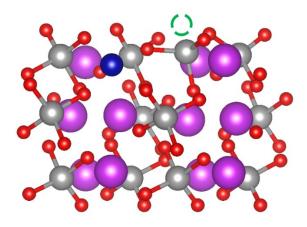
$$= 3.35 \text{ eV}$$

The energy of H₂O molecule:


$$E_{H_{2}O} = -0.14224670E + 02 = -14.22 \text{ eV}$$

The total energy of BiVO₄ after adsorption of H₂O molecule:

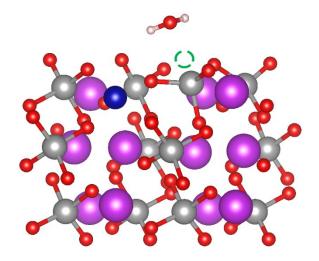
$$E_{tot} = -0.54875740E + 03 = -548.75 \text{ eV}$$


The energy of adsorption of H₂O molecule onto the BiVO₄ structure:

$$E_{ads} = -548.75 \text{ eV} - (-534.25 \text{ eV} - 14.22 \text{ eV}) = -0.28 \text{ eV}$$

The energy of Co-doped $BiVO_4$:

$$E_{per} = -0.53398119E + 03 = -533.98 \text{ eV}$$


The energy of Co-doped $BiVO_4$ with oxygen vacancy :

$$E_{tot} = -0.52816242E + 03 = -528.16 \text{ eV}$$

The formation energy of oxygen vacancy:

$$E_f = E_{tot} - E_{per} + E_o = -528.16 \text{ eV} - (-533.98 \text{ eV}) + \frac{1}{2} \times (-8.84 \text{ eV})$$

$$= 1.4 \text{ eV}$$

The energy of H₂O molecule:

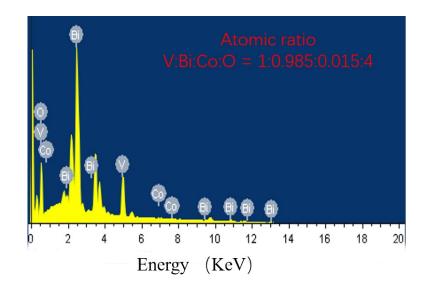
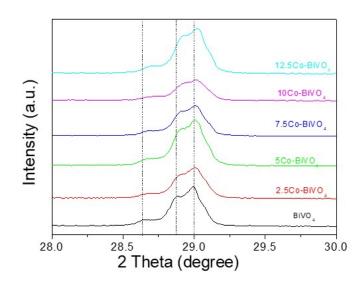
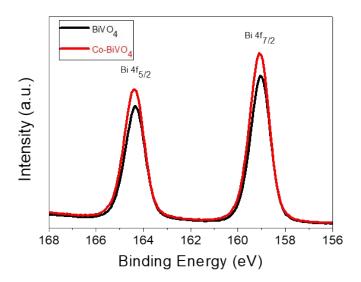
$$E_{H2O} = -0.14224670E + 02 = -14.22 \text{ eV}$$

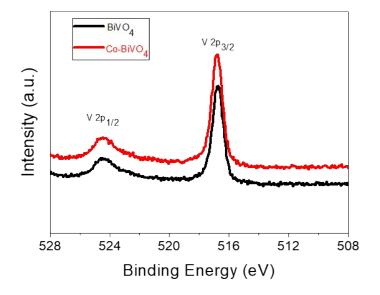
The total energy of Co-doped $BiVO_4$ with oxygen vacancy after adsorption of H_2O molecule :

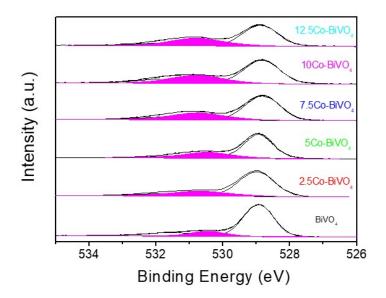
$$E_{tot} = -0.54281575E + 03 = -542.81 \text{ eV}$$

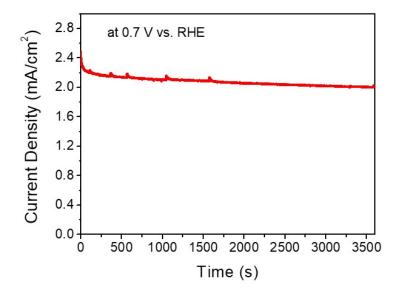
The energy of adsorption of H_2O molecule onto the Co-doped $BiVO_4$ with oxygen vacancy structure :

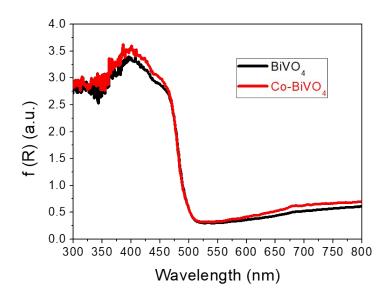
$$E_{ads} = -542.81 \text{ eV} - (-528.16 \text{ eV} - 14.22 \text{ eV}) = -0.43 \text{ eV}$$


Figure S1. EDS data of 10Co-BiVO₄ photoanode.


Figure S2. The magnified analysis of the XRD pattern of different Co-doped BiVO₄ photoanodes.


Figure S3. High-resolution XPS spectra of Bi 4f for pure BiVO₄ and Co-BiVO₄ electrode.


Figure S4. High-resolution XPS spectra of V 2p for pure BiVO₄ and Co-BiVO₄ electrode.

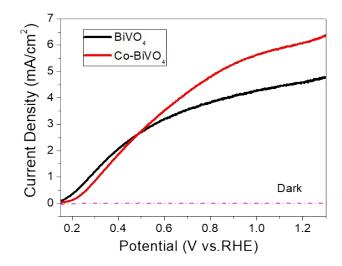

Figure S5. High-resolution XPS spectra of O 2p for pure BiVO₄ and Co-doped BiVO₄ photoanodes varied with the cobalt concentration.

Figure S6. Photocurrent density as a function of time course for BiVO₄ and Co-BiVO₄ at 0.7 V versus RHE under AM 1.5 G illumination.

Figure S7. UV-vis absorption spectra of BiVO₄ and Co-BiVO₄ photoanodes.

Figure S8. Photocurrent density versus applied potential curves. The PEC performances were measured in a 0.5 M sodium borate electrolyte in the presence of 0.2 M Na₂SO₃ (pH 9.3).

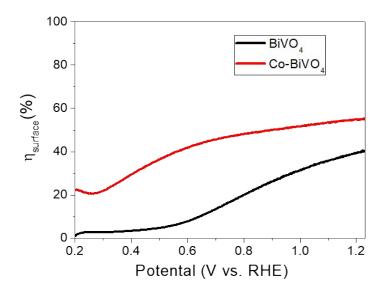
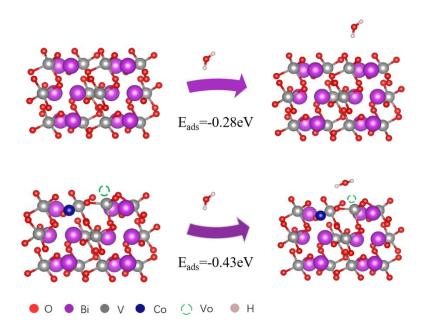



Figure S9. The surface charge separation efficiency of BiVO₄ and Co-BiVO₄.

Figure S10. Schematic illustration of the adsorption of water molecular onto the surface of BiVO₄ and Co-BiVO₄ with rich oxygen vacancies.

 $\begin{table c} \textbf{Table S1.} Comparison of the performance of doped-BiVO_4 photoelectrodes under simulated sunlight. \end{table}$

Year	Photoanode	Fabrication method	^a Electrolyte (pH)	b Photocurrent density (1.23 V vs. RHE)	Reference.
2016	Fe/W- BiVO ₄	drop-casting	0.1M Na ₂ SO ₄	1.50 mA/cm ²	2
2018	In-BiVO ₄	drop-casting	0.1 M Na_2SO_4	1.56 mA/cm ²	3
2018	Mo-BiVO ₄	dropping	0.5 M KBi (8.5)	2.89±0.05 mA /cm ²	4
2018	Zr-BiVO ₄	electrodeposition	0.1 M PBS (7.5)	0.32 mA/cm ²	5
2019	Zn-BiVO ₄	electrodeposition	0.1 M KPi (7.0)	3.06mA/cm ²	6
2018	Mo-BiVO ₄	pulsed laser deposition	0.5 M KPi (7.0)	1.70 mA/cm ²	7
2018	Zn-BiVO ₄	drop-casting	0.1 M KBi (8.5)	1.07 mA/cm^2	8
	Cu-BiVO ₄			0.94 mA/cm ²	
	Ni-BiVO ₄			0.82 mA/cm^2	
	Co-BiVO ₄			1.01 mA/cm ²	
	Co-BiVO ₄	electrodeposition	0.5 M NaBi (9.3)	3.50 mA/cm ²	This work

a. KPi: potassium phosphate, KBi: potassium borate, NaBi: sodium borate.

b. The light source of all results (AM 1.5G, 100 mW/cm²).

Table S2. The carrier densities (N_{d}) of $BiVO_4$ and $Co\text{-}BiVO_4.$

	$N_{\rm d}/10^{18}~{\rm cm}^{-3}$
BiVO ₄	1.7014
Co-BiVO ₄	3.3232

References

- Y. Wang, F. Li, X. Zhou, F. Yu, J. Du, L. Bai and L. Sun, *Angew. Chem., Int. Ed.*, 2017, 56, 6911-6915.
- Z. Jiao, J. Zheng, C. Feng, Z. Wang, X. Wang, G. Lu and Y. Bi, *ChemSusChem*,
 2016, 9, 2824-2831.
- 3. X. Zhong, H. He, M. Yang, G. Ke, Z.-Y. Zhao, F. Dong, B. Wang, Y. Chen, X. Shi and Y. Zhou, *J. Mater. Chem. A*, 2018, **6**, 10456-10465.
- Y. Shi, Y. Yu, Y. Yu, Y. Huang, B. Zhao and B. Zhang, ACS Energy. Lett., 2018,
 3, 1648-1654.
- 5. M. N. Shaddad, P. Arunachalam, J. Labis, M. Hezam and A. M. Al-Mayouf, *Applied. Catalysis.*, *B*, 2019, **244**, 863-870.
- Q. G. Pan, K. R. Yang, G. L. Wang, D. D. Li, J. Sun, B. Yang, Z. Q. Zou, W. B. Hu, K. Wen and H. Yang, *Chem. Eng. J.*, 2019, 372, 399-407.
- 7. M. Huang, J. Bian, W. Xiong, C. Huang and R. Zhang, *Journal of Materials Chemistry A*, 2018, **6**, 3602-3609.
- 8. H. Lu, V. Andrei, K. J. Jenkinson, A. Regoutz, N. Li, C. E. Creissen, A. E. H. Wheatley, H. Hao, E. Reisner, D. S. Wright and S. D. Pike, *Adv. Mater.* 2018, **30**, 1804033.