+Supporting Information

Cobalt doped BiVO⁴ with rich oxygen vacancies for efficient

photoelectrochemical water oxidation

Guoquan Liu,^a Fei Li,*^a Yong Zhu,^a Jiayuan Li^a and Licheng Sun^{ab}

^aState Key Laboratory of Fine Chemicals, DUT−KTH Joint Education and Research

Center on Molecular Devices, Dalian University of Technology, Dalian 116024, R. P.

China.

^bDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.

*Corresponding Author, E-mail: lifei@dlut.edu.cn

Experiment section

Chemical reagents and Instruments

Bismuth nitrate pentahydrate $(Bi(NO₃)₃·5H₂O, \ge 98.0\%)$, Vanadium(IV)oxy Acetylacetonate (VO(acac)₂, 98%), were purchased from Aladdin. p-Benzoquinone (\geq 98.0%) and Cobaltous chloride $(CoCl₂, 99.5%)$ was supplied by Sinopharm Chemical Reagent Co., Ltd. Potassium iodide (KI, \geq 98.5%) was purchased from Tianjin Guangfu Development Co., LTD. High purity water (18.2 MΩ/cm) supplied by a Milli-Q system (Millipore, Direct-Q 3 UV) was used in all experiments. FTO substrates were purchased from Dalian Heptachroma SolarTech Co., Ltd. (thickness of ~2.2 mm, transmittance of $>$ 90%, resistance $<$ 15 Ω/cm²). Before using, the FTO substrates were ultrasonically cleaned in deionized water, ethanol, and acetone, respectively. All other reagents were commercially available and used as received.

UV-vis diffuse reflectance spectrum (DRS) of the sample was measured using a Shimadzu UV-2000 spectrophotometer. Electrochemical measurements were taken with a CHI760E electrochemical potentiostat (Shanghai Chenhua, China). X-ray Diffraction (XRD) was collected with a SmartLab 9KW diffractometer using Cu Kα radiation (154.1 nm). Scanning electron microscopy (SEM) and energy dispersive Xray (EDX) mapping of the electrodes were conducted with a Hitachi SU8220 instrument with an accelerating voltage of 5.0 kV. Transmission Electron Microscope (TEM) was carried out by Thermo Scientific TF30 instrument X-ray photoelectron spectroscopy (XPS) measurement was performed on a Thermo ESCALAB XI+ instrument using 150 W Kα radiate.

Preparation of BiVO⁴ and Co-BiVO⁴ photoanode

 $BiVO₄$ and Co-BiVO₄ films were prepared by electrodeposition.¹ First, the 2 mmol of $Bi(NO₃)$ ₃ was dissolved in 50 mL of a pH 1.7 HNO₃ solution. After the mixture was stirred for 5 min, 20 mmol of KI was added to the solution at room temperature and the mixture was stirred for another 5 min. This solution was mixed with 20 mL of absolute ethanol containing 4.6 mmol of *p*-benzoquinone and was vigorously stirred for a few minutes. Then cobaltous chloride dissolved in the solution forms a (0, 2.5, 5, 7.5, 10, 12.5mg/ml) $Co²⁺$ precursor solution. A typical three-electrode cell containing a fluorine-doped tin oxide (FTO) working electrode, a saturated Ag/AgCl reference electrode, and a Pt wire counter electrode were used for electrodeposition. Electrodeposition was carried out at constant potential -0.1 V vs. Ag/AgCl for 3 min to obtain the BiOI and Co-BiOI electrode, which was rinsed with deionized water and dried in ambient air. The $BiVO₄$ and Co-doped $BiVO₄$ film were prepared by placing 30 μL dimethyl sulfoxide (DMSO) solution containing 0.2 M vanadyl acetylacetonate (VO(acac)₂) on the BiOI electrodes, followed by heating in a muffle furnace at 450 °C (ramping rate 2 °C/ min) for 2 h. After they cooled to room temperature, the electrodes were soaked in 1 M NaOH solution for 30 min to remove the excess V_2O_5 . The obtained pure BiVO₄, 2.5Co-BiVO₄, 5Co-BiVO₄, 7.5Co-BiVO₄, 10Co-BiVO₄ and 12.5Co-BiVO₄ electrodes were rinsed with deionized water and dried in air.

Electrochemical and photoelectrochemical Measurements

Photoelectrochemical and electrochemical performances of as-prepared anodes (BiVO4, Co-BiVO4) were collected in a standard three-electrode system, with the anodes as the working electrodes, a platinum wire as the counter electrode, and Ag/AgCl as the reference electrode controlled by a CHI 760E potentiostat. The simulated solar illumination was obtained by passing light from a 300 W xenon lamp equipped with an AM 1.5 filter, and the power intensity of the incident light was calibrated to 100 mW/cm² using a THORLABS PM100D S121C photodetector. The 0.5 M sodium borate buffer solution (pH 9.3) was used as the electrolyte, which is obtained by dissolving 0.5 mol of H_3BO_3 in 1L deionized water, followed by adding NaOH to adjust the pH to 9.3. The photocurrent was measured by linear sweep voltammetry with a scan rate of 10 mV/s. The recorded potential versus Ag/AgCl $(E_{Ag/AgCl})$ was converted against RHE using the Nernst equation $(E_{RHE} = E_{Ag/AgCl} +$ $0.197 + 0.059$ pH). The data were collected by back illumination.

Electrochemical impedance spectroscopy (EIS) of the as-prepared film electrodes was measured at 1.23 V vs. RHE in a frequency range of 0.1-100000 Hz with an amplitude of 5 mV in 0.5 M sodium borate buffer solution (pH 9.3) under 100mW/cm^2 irradiation. The measured EIS spectra were fitted by Zview software using the proposed equivalent circuit model. The incident photon-to-current conversion efficiency (IPCE) of as-prepared films was measured at 1.23 V vs. RHE in 0.5 M sodium borate buffer solution (pH 9.3) under irradiation of monochromatic light. Incident light power was measured using a THORLABS PM100D S120VC photodetector. The IPCE at each wavelength was calculated by the following equation:

$$
IPCE (\%) = \frac{1240 \times (J_{light} - J_{dark})}{\lambda \times P_{light}} \times 100\%
$$

Where J is the photocurrent density $(mA/cm²)$, P_{light} is the incident light power density (mW/cm²), and λ is the wavelength (nm) of the incident light.

The applied bias photon-to-current efficiency (ABPE) was calculated by the following equation:

$$
ABPE(\%) = \frac{U_{light} - J_{dark} \times (1.23 - V_{bias})}{P_{light}} \times 100\%
$$

where J is the photocurrent density, V_{bias} is the applied potential, P_{light} is the incident light power density (mW/cm²).

The donor densities and flat band potential of $\rm BiVO_4$ and $\rm Co$ -doped $\rm BiVO_4$ films were investigated using the Mott-Schottky measurement at a frequency of 1 kHz in dark. The donor densities was determined using the following equation:

$$
\frac{1}{C^2} = \frac{2}{e \varepsilon \varepsilon_0 N_d} \frac{KT}{\left[(V - V_f) - e\right]}
$$

$$
N_d = \frac{2}{e \varepsilon \varepsilon_0} \frac{d\left(\frac{1}{C^2}\right)}{dv}
$$

where C is the differential capacitance of the space-charge region, ε is the relative

dielectric constant of sample, ε_0 is the permittivity of vacuum, A is the surface area of sample, N_d is the concentration of charge carriers, V is the applied potential, V_f is the flat band potential, K is Boltzmann constant, T is temperature and e is the elemental charge.

The surface charge separation sufficiency (η_{surface}) was calculated using the equation:

$$
\eta_{surface(100\%)} = \frac{J_{water}}{J_{sulfite}} \times 100\%
$$

Calculations on the formation energies (E_f) of oxygen vacancy and the energy of adsorption of $H₂O$ molecule

The formation energies of oxygen vacancy in $BiVO₄$ and $Co-BiVO₄$ (200) have been studied by means of periodic density functional calculations were conducted using the "Vienna *ab initio* simulation package" (VASP 5.4.1), applying the generalized gradient correlation functional, which were calculated as:

The total energy of $\rm BiVO_4$ structure:

 E_{per} = -0.53425014E+03= -534.25 eV

The energy of $\frac{BiVO_4}{with oxygen vacancy}$:

 E_{tot} = -0.52648191E+03= -526.48 eV

The energy of the O atom:

 $E_O = 2 \times (-8.84 \text{ eV}) = -4.42 \text{ eV}$ 1

The formation energy of oxygen vacancy:

 $E_f = E_{tot} - E_{per} + E_o = 526.48 \text{ eV} - (-534.25 \text{ eV}) + 2 \times (-8.84 \text{ eV})$ 1

 $=3.35$ eV

The energy of H_2O molecule:

 E_{H2O} = -0.14224670E+02 = -14.22 eV

The total energy of $\rm BiVO_4$ after adsorption of $\rm H_2O$ molecule:

 E_{tot} = -0.54875740E+03 = -548.75 eV

The energy of adsorption of H_2O molecule onto the BiVO₄ structure:

 $E_{ads} = -548.75 \text{ eV} - (-534.25 \text{ eV} - 14.22 \text{ eV}) = -0.28 \text{ eV}$

The energy of Co-doped BiVO₄:

 E_{per} = -0.53398119E+03 = -533.98 eV

The energy of Co-doped BiVO₄ with oxygen vacancy:

 E_{tot} = -0.52816242E+03 = -528.16 eV

The formation energy of oxygen vacancy:

 $E_f = E_{tot} - E_{per} + E_o = -528.16 \text{ eV} - (-533.98 \text{ eV}) + 2 \times (-8.84 \text{ eV})$ 1

 $= 1.4$ eV

The energy of H₂O molecule:

 E_{H2O} = -0.14224670E+02 = -14.22 eV

The total energy of Co-doped BiVO₄ with oxygen vacancy after adsorption of H_2O molecule:

 E_{tot} = -0.54281575E+03 = -542.81 eV

The energy of adsorption of H_2O molecule onto the Co-doped BiVO₄ with oxygen vacancy structure:

 $E_{ads} = -542.81$ eV - (-528.16 eV-14.22 eV) = -0.43 eV

Figure S1. EDS data of 10Co-BiVO₄ photoanode.

Figure S2. The magnified analysis of the XRD pattern of different Co-doped BiVO⁴ photoanodes.

Figure S3. High-resolution XPS spectra of Bi 4f for pure BiVO⁴ and Co-BiVO⁴ electrode.

Figure S4. High-resolution XPS spectra of V 2p for pure BiVO⁴ and Co-BiVO⁴ electrode.

Figure S5. High-resolution XPS spectra of O 2p for pure BiVO⁴ and Co-doped BiVO⁴ photoanodes varied with the cobalt concentration.

Figure S6. Photocurrent density as a function of time course for BiVO₄ and Co-BiVO₄ at 0.7 V versus RHE under AM 1.5 G illumination.

Figure S7. UV-vis absorption spectra of BiVO⁴ and Co**-**BiVO⁴ photoanodes.

Figure S8. Photocurrent density versus applied potential curves. The PEC performances were measured in a 0.5 M sodium borate electrolyte in the presence of $0.2 M Na₂SO₃$ (pH 9.3).

Figure S9. The surface charge separation efficiency of BiVO₄ and Co-BiVO₄.

Figure S10. Schematic illustration of the adsorption of water molecular onto the surface of BiVO⁴ and Co-BiVO⁴ with rich oxygen vacancies.

Year	Photoanode	Fabrication method	^a Electrolyte (pH)	b Photocurrent density (1.23) V vs. RHE)	Reference.
2016	Fe/W- BiVO ₄	drop-casting	$0.1M$ Na ₂ SO ₄	1.50 mA/cm ²	$\overline{2}$
2018	In-BiVO ₄	drop-casting	0.1 _M Na ₂ SO ₄	1.56 mA/cm ²	3
2018	$Mo-BiVO4$	dropping	0.5 M KBi (8.5)	2.89 ± 0.05 mA /cm ²	$\overline{4}$
2018	$Zr-BiVO4$	electrodeposition	$0.1 M$ PBS (7.5)	0.32 mA/cm ²	5
2019	$Zn-BiVO4$	electrodeposition	0.1 M KPi (7.0)	3.06 mA/cm ²	6
2018	$Mo-BiVO4$	pulsed laser deposition	0.5 M KPi (7.0)	1.70 mA/cm ²	$\overline{7}$
2018	$Zn-BiVO4$	drop-casting	0.1 M KBi (8.5)	1.07 mA/cm ²	8
	$Cu-BiVO4$			0.94 mA/cm ²	
	$Ni-BiVO4$			0.82 mA/cm^2	
	$Co-BiVO4$			1.01 mA/cm ²	
	$Co-BiVO4$	electrodeposition	$0.5 M$ NaBi (9.3)	3.50 mA/cm ²	This work

Table S1. Comparison of the performance of doped-BiVO₄ photoelectrodes under simulated sunlight.

a. KPi: potassium phosphate, KBi: potassium borate, NaBi: sodium borate.

b. The light source of all results (AM 1.5G, 100 mW/cm²).

Table S2. The carrier densities (N_d) of BiVO₄ and Co-BiVO₄.

References

- 1. Y. Wang, F. Li, X. Zhou, F. Yu, J. Du, L. Bai and L. Sun, *Angew. Chem., Int. Ed.*, 2017, **56**, 6911-6915.
- 2. Z. Jiao, J. Zheng, C. Feng, Z. Wang, X. Wang, G. Lu and Y. Bi, *ChemSusChem*, 2016, **9**, 2824-2831.
- 3. X. Zhong, H. He, M. Yang, G. Ke, Z.-Y. Zhao, F. Dong, B. Wang, Y. Chen, X. Shi and Y. Zhou, *J. Mater. Chem. A,* 2018, **6**, 10456-10465.
- 4. Y. Shi, Y. Yu, Y. Yu, Y. Huang, B. Zhao and B. Zhang, *ACS Energy. Lett.,* 2018, **3**, 1648-1654.
- 5. M. N. Shaddad, P. Arunachalam, J. Labis, M. Hezam and A. M. Al-Mayouf, *Applied. Catalysis., B,* 2019, **244**, 863-870.
- 6. Q. G. Pan, K. R. Yang, G. L. Wang, D. D. Li, J. Sun, B. Yang, Z. Q. Zou, W. B. Hu, K. Wen and H. Yang, *Chem. Eng. J.,* 2019, **372**, 399-407.
- 7. M. Huang, J. Bian, W. Xiong, C. Huang and R. Zhang, *Journal of Materials Chemistry A*, 2018, **6**, 3602-3609.

8. H. Lu, V. Andrei, K. J. Jenkinson, A. Regoutz, N. Li, C. E. Creissen, A. E. H. Wheatley, H. Hao, E. Reisner, D. S. Wright and S. D. Pike, *Adv. Mater.* 2018, **30**, 1804033.