## **Electronic Supplementary Information**

## The Role of π-Linkers and Electron Acceptors in Tuning the Nonlinear Optical Properties of BODIPY Based Zwitterionic Molecules

## Tanushree Sutradhar and Anirban Misra\*

## Department of Chemistry, University of North Bengal, Darjeeling – 734 013, West Bengal, India

\*Phone: +91-9434228745; Email: anirbanmisra@yahoo.com; anirbanmisra@nbu.ac.in

| Item      | Description                                                                                          | pages      |
|-----------|------------------------------------------------------------------------------------------------------|------------|
| Fig. S1   | Optimized structure of compounds 1                                                                   | S2         |
| Table S1  | Dihedral angles and bond angles of optimized structure of compound 1                                 | S2         |
| Fig. S2   | Optimized structure of compound 1a                                                                   | S2         |
| Table S2  | Dihedral angles and bond angles of optimized structure of compound 1a                                | S3         |
| Fig. S3   | Optimized structure of compound 1b                                                                   | S3         |
| Table S3  | Dihedral angles and bond angles of optimized structure of compound 1b                                | S3         |
| Fig. S4   | Optimized structure of compound 1c                                                                   | S4         |
| Table S4  | Dihedral angles and bond angles of optimized structure of compound 1c                                | S4         |
| Fig. S5   | Optimized structure of compounds 1d                                                                  | S4         |
| Table S5  | Dihedral angles and bond angles of optimized structure of compound 1d                                | S5         |
| Fig. S6   | Optimized structure of compounds 2                                                                   | S5         |
| Table S6  | Dihedral angles and bond angles of optimized structure of compound 2                                 | S5         |
| Fig. S7   | Optimized structure of compound 2a                                                                   | S6         |
| Table S7  | Dihedral angles and bond angles of optimized structure of compound 2a                                | S6         |
| Fig. S8   | Optimized structure of compound 2b                                                                   | <b>S</b> 6 |
| Table S8  | Dihedral angles and bond angles of optimized structure of compound 2b                                | S6-S7      |
| Fig. S9   | Optimized structure of compound 2c                                                                   | <b>S</b> 7 |
| Table S9  | Dihedral angles and bond angles of optimized structure of compound 2c                                | S7         |
| Fig. S10  | Optimized structure of compound 2d                                                                   | <b>S</b> 7 |
| Table S10 | Dihedral angles and bond angles of optimized structure of compound 2d                                | <b>S</b> 8 |
| Table S11 | Computed absorption maxima ( $\lambda_{max}$ in nm), oscillator strengths (f), electronic excitation | S8-S9      |
|           | energies (eV) of dyes (1 to 2d) using TD-DFT method at B3LYP/6-311+G(d,p) level.                     |            |
| Table S12 | Static polarizability, first hyperpolarizability of the studied dyes at the CAM-B3LYP/6-             | S9         |
|           | 311++G(d,p) level of theory.                                                                         |            |



**Table S14**Benchmarking of hyperpolarizability.



Table S1 Dihedral angles and bond angles of optimized structure of compound 1

| Dihedral angles |        |  |
|-----------------|--------|--|
| C32-C30-C2-C3   | -179.3 |  |
| C7-C8-C20-C21   | 178.28 |  |
| Bond angles     |        |  |
| C32-C30-C2      | 121.2  |  |
| C31-C30-C2      | 123.3  |  |
| C8-C20-C22      | 120.7  |  |
| C8-C20-C21      | 122.2  |  |



Fig. S2 Optimized structure of compounds 1a

Table S2 Dihedral angles and bond angles of optimized structure of compound 1a

| Dihedral angles |        |  |
|-----------------|--------|--|
| C37-C34-C33-C2  | -179.9 |  |
| C20-C21-C27-C26 | 179.9  |  |

S10

| Bond angles |       |  |
|-------------|-------|--|
| C36-C37-C34 | 120.4 |  |
| C38-C37-C34 | 124.5 |  |
| C21-C27-C22 | 123.1 |  |
| C21-C27-C26 | 119.2 |  |



 Table S3 Dihedral angles and bond angles of optimized structure of compound 1b

| Dihedral angles |        |  |
|-----------------|--------|--|
| C45-C44-C32-C30 | -179.9 |  |
| C45-C44-C32-S29 | 0.002  |  |
| S29-C27-C2-C3   | -179.9 |  |
| C9-C8-C20-S22   | 179.9  |  |
| C23-C25-C34-C35 | 180    |  |
| S22-C25-C34-C35 | -0.003 |  |
| Bond angles     |        |  |
| C44-C32-S29     | 122.2  |  |
| C34-C25-S22     | 122    |  |



Fig. S4 Optimized structure of compounds 1c

**Table S4** Dihedral angles and bond angles of optimized structure of compound 1c

| Dihedral angles |        |  |
|-----------------|--------|--|
| C42-C41-C38-C52 | 179.9  |  |
| C42-C41-C38-S37 | 0.001  |  |
| C36-C35-C2-C3   | -179.9 |  |
| C7-C8-C33-C20   | 180    |  |
| C7-C8-C33-S21   | -0.001 |  |
| C53-C22-C28-C23 | 180    |  |
| S21-C22-C28-C27 | -179.9 |  |
| Bond angles     |        |  |
| C41-C38-S37     | 122.2  |  |
| C28-C22-S21     | 122.1  |  |
|                 |        |  |



Fig. S5 Optimized structure of compounds 1d

Table S5 Dihedral angles and bond angles of optimized structure of compound 1d

| Dihedral angles |        |  |
|-----------------|--------|--|
| C48-C49-C44-S46 | 179.9  |  |
| C40-C39-C2-C1   | -179.9 |  |
| S45-C39-C2-C3   | -179.9 |  |
| C7-C8-C20-C21   | -180   |  |
| C9-C8-C20-C26   | -179.9 |  |
| C28-C33-C25-S27 | 179.9  |  |
| Bond angles     |        |  |
| C49-C44-S45     | 121.3  |  |
| S45-C39-C2      | 120.1  |  |
| C8-C20-C26      | 120.3  |  |
| C33-C25-S27     | 121.2  |  |



Fig. S6 Optimized structure of compounds 2 in gas phase

**Table S6** Dihedral angles and bond angles of optimized structure of compound 2

| Dihedral angles |        |  |
|-----------------|--------|--|
| N38-C31-C2-C3   | -175.9 |  |
| C7-C8-C20-C21   | 178.9  |  |
| Bond angles     |        |  |
| N38-C31-C2      | 122.3  |  |
| C8-C20-C21      | 122.4  |  |



Fig. S7 Optimized structure of compounds 2a in gas phase

 Table S7 Dihedral angles and bond angles of optimized structure of compound 2a

| Dihedral angles |       |  |
|-----------------|-------|--|
| C25-C24-C23-C2  | 179.9 |  |
| C8-C20-C21-C36  | -180  |  |
| Bond angles     |       |  |
| N32-C25-C24     | 125.3 |  |
| C21-C36-C37     | 119.3 |  |



Fig. S8 Optimized structure of compounds 2b in gas phase

Table S8 Dihedral angles and bond angles of optimized structure of compound 2b

| Dihedral angles |        |  |
|-----------------|--------|--|
| N38-C31-C45-C43 | -179.9 |  |
| S42-C40-C2-C3   | 179.9  |  |
| S49-C47-C8-C9   | 179.9  |  |
| C22-C20-C52-C50 | 180    |  |
| Bond angles     |        |  |
| C31-C45-S42     | 121.8  |  |

| S42-C40-C2  | 120.5 |
|-------------|-------|
| C8-C47-S49  | 121.4 |
| S49-C52-C20 | 122.0 |



Fig. S9 Optimized structure of compounds 2c in gas phase

**Table S9** Dihedral angles and bond angles of optimized structure of compound 2c

| Dihedral angles   |       |  |
|-------------------|-------|--|
| S38-C31-C45-C43   | -180  |  |
| S42-C40-C2-C3     | 179.9 |  |
| C7-C8-C47-S49     | 179.9 |  |
| C50-C52-C20-C21   | 179.9 |  |
| Bond angles       |       |  |
| C31-C45-S42 121.8 |       |  |
| S42-C40-C2        | 120.5 |  |
| C8-C47-S49        | 122.8 |  |
| S49-C52-C20       | 122.3 |  |



Fig. S10 Optimized structure of compounds 2d in gas phase

**Table S10** Dihedral angles and bond angles of optimized structure of compound 2d

| Dihedral angles |        |  |  |  |
|-----------------|--------|--|--|--|
| N55-C57-C25-C24 | -179.9 |  |  |  |
| S26-S20-C8-C9   | 179.9  |  |  |  |
| S34-C28-C2-C3   | -179.9 |  |  |  |
| S35-C33-C38-C37 | 180    |  |  |  |
| Bond angles     |        |  |  |  |
| C57-C25-S27     | 120.9  |  |  |  |
| S26-C20-C8      | 119.9  |  |  |  |
| C2-C28-S34      | 120.3  |  |  |  |
| S35-C33-C38     | 120.1  |  |  |  |

**Table S11** Main electronic transitions, maximum absorption wavelength ( $\lambda_{max}$ ), oscillator strength(*f*) and transition nature of BODIPY based dyes in gas phase at B3LYP/6-311++G(d,p) level of theory.

| Dye | Excited        | $\lambda_{max}$ | f      | Assignment                              |       |
|-----|----------------|-----------------|--------|-----------------------------------------|-------|
|     | energy<br>(eV) | (nm)            |        |                                         |       |
| 1   | 1.229          | 1008.17         | 0.4718 | $H \rightarrow L$                       | 0.587 |
|     | 1.057          | 1173.07         | 0.1907 | $\mathrm{H} \rightarrow \mathrm{L+1}$   | 0.519 |
|     | 1.761          | 704.18          | 0.0282 | $\mathrm{H} \rightarrow \mathrm{L+2}$   | 0.697 |
| 1a  | 1.1            | 1126.71         | 0.7545 | $H \rightarrow L$                       | 0.397 |
|     | 1.264          | 980.96          | 0.4404 | $\mathrm{H} \rightarrow \mathrm{L} + 1$ | 0.491 |
| 1b  | 0.953          | 1301.28         | 0.9164 | $H \rightarrow L$                       | 0.374 |
|     | 1.151          | 1076.74         | 0.4941 | $H \rightarrow L + 1$                   | 0.493 |
| 1c  | 0.807          | 1536.02         | 0.5670 | $\mathrm{H} \rightarrow \mathrm{L}$     | 0.725 |
|     | 1.155          | 1073.14         | 0.7233 | $\mathrm{H} \rightarrow \mathrm{L} + 1$ | 0.634 |
| 1d  | 0.735          | 1684.85         | 1.209  | $H \rightarrow L$                       | 0.351 |
|     | 1.046          | 1184.92         | 0.5106 | $\mathrm{H} \rightarrow \mathrm{L} + 1$ | 0.509 |
| 2   | 0.997          | 1243.53         | 0.1438 | $H \rightarrow L$                       | 0.513 |
|     | 1.322          | 938.02          | 0.3066 | $H \rightarrow L+1$                     | 0.447 |
| 2a  | 0.756          | 1639.72         | 0.1830 | $H \rightarrow L$                       | 0.665 |
|     | 1.229          | 1008.30         | 0.5580 | $H \rightarrow L+1$                     | 0.568 |

| 2b | 0.729 | 1701.23 | 0.1683 | $\mathrm{H} \to \mathrm{L}$             | 0.452 |
|----|-------|---------|--------|-----------------------------------------|-------|
|    | 1.021 | 1213.96 | 0.5388 | $\mathrm{H} \rightarrow \mathrm{L}{+1}$ | 0.272 |
| 2c | 0.700 | 1770.09 | 0.1651 | $\mathrm{H} \to \mathrm{L}$             | 0.524 |
|    | 0.969 | 1279.28 | 0.7996 | $\mathrm{H} \rightarrow \mathrm{L}{+1}$ | 0.581 |
| 2d | 0.653 | 1897.67 | 0.2899 | $\mathrm{H} \to \mathrm{L}$             | 0.575 |
|    | 0.850 | 1458    | 0.5713 | $H \rightarrow L+1$                     | 0.458 |

**Table S12** Static polarizability, first hyperpolarizability of the studied dyes at the CAM-B3LYP/6-311++G(d,p) level of theory.

| Molecules | Δα<br>10 <sup>-24</sup> esu | β <sub>total</sub><br>10 <sup>-30</sup> esu |
|-----------|-----------------------------|---------------------------------------------|
| 1         | 107.13                      | 462.05                                      |
| 1a        | 176.87                      | 2212.40                                     |
| 1b        | 267.10                      | 4258.66                                     |
| 1c        | 268.44                      | 5157.16                                     |
| 1d        | 430.23                      | 7413.08                                     |
| 2         | 77.19                       | 1023.04                                     |
| 2a        | 129.89                      | 1967.89                                     |
| 2b        | 190.94                      | 4572.24                                     |
| 2c        | 200.71                      | 5492.05                                     |
| 2d        | 301.62                      | 14,231.26                                   |

**Table S13**  $\beta_x$ ,  $\beta_y$ , and  $\beta_z$  components (10<sup>-30</sup> esu) of studied molecules (1 to 2d) obtained from DFT calculation (CAM-B3LYP functional), employing the 6-311++G(d,p) basis set.

| Molecul<br>es | $\beta_x$ | $\beta_y$ | $\beta_z$ |
|---------------|-----------|-----------|-----------|
| 1             | 2.93      | 32.82     | 460.88    |
| 1a            | 1.79      | 347.97    | 2184.79   |
| 1b            | -9.99     | 281.70    | 4249.32   |
| 1c            | 93.3      | -703.09   | 5108.17   |
| 1d            | -48.4     | 798.11    | 7639.83   |
| 2             | -6.72     | 152.02    | 1011.66   |
| 2a            | 33.0      | -113.76   | 1963.70   |
| 2b            | 21.2      | 275.39    | 4563.89   |
| 2c            | 0.72      | 203.38    | 5488.59   |
| 2d            | -21.1     | -729.59   | 14212.53  |

 Table S14 Benchmarking of hyperpolarizability.

| Molecule                             | Molecule Solvent Experiment<br>β <sub>total</sub> |              | Theoretical<br>β <sub>total</sub> (10 <sup>-30</sup> esu) |               |  |
|--------------------------------------|---------------------------------------------------|--------------|-----------------------------------------------------------|---------------|--|
| (10 <sup>-30</sup> esu)              | B3LYP                                             | CAM-B3LYP/   |                                                           |               |  |
|                                      |                                                   |              | /6-311++g(d,p)                                            | 6-311++G(d,p) |  |
| P-Nitroaniline                       | benzene                                           | 34.5         | 28.82                                                     | 14.78         |  |
| Paradimethylamino-β-<br>nitrostyrene | Ethanol                                           | $220 \pm 40$ | 196.55                                                    | 162.46        |  |