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Supplementary data 

Section I 

 

Figure S1. The relation between fluorescence integral intensity and absorbance (the slope 

of lines indicated the QY of N-CDs) 

Table S1. Optimization of PEG concentration for the production of N-CDs 

No. Starting materials ratio Quantum yield (QY) 

 CMC PEG weight  

1 0.2 g 0% 8 

2 0.2 g 10% 14 

3 

4 

0.2 g 

0.2 g 

20% 

30% 

23 

18 

 

 

y = 962408x + 1336.3

R² = 0.9988

y = 481514x - 1598.6

R² = 0.9956
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Table S2. Optimization of synthesis conditions for the production of N-CDs 

No. Synthesis temperature Reaction time Quantum yield (QY) 

1 230°C 6hr 16 

2 250°C 6hr 23 

3 270°C 6hr 27 

4 260°C 1hr 20 

6 260°C 3hr 22 
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Figure S2. A proposed formation mechanism of N-CDs 

Section II 

Characterization of N-CDs 

EDA analysis was used to gain insight into the elemental composition of the obtained 

nanodots. Compared to the undoped CDs, the EDS of N-CDs (Table S4) displays a 

noticeable N contents with an atomic ratio of 22.6%, indicating the successful nitrogen-

passivation process. The rising of carbon weight along with the oxygen content reduction 

confirms the aromatization process with the elimination of O moieties.  



Table S3. Elemental compositions of the undoped and N-CDs 

Sample C/atomic % O/atomic% N/atomic% 

CDs 52.7 30.9 ND* 

N-CDs 61.2 9.5 22.6 

   Note. ND: not detected. 

FTIR spectra (Figure S2) confirms the presence of plenty functional groups on the edge of 

N-CDs. More specifically, the peak at 3374 cm-1 is ascribed to the stretching vibration of 

N-H/ O-H. The peaks at 2150 cm-1 and 765 cm-1 attributed to C-H stretching and bending 

mode, respectively whereas the peak at 1641 cm-1 is corresponded to C=O in the conjugated 

domain. The characteristic stretching band of the C=N and C-N bonds were observed at 

1366 cm-1 and 1213 cm-1. The formation of N-H, C=N and C-N moieties indicate the 

effective involvement of PEG into the final domain of N-CDs. The peaks at 1094 cm-1 and 

960 cm-1 were related to C-O and C-O-C, demonstrating the oxidation of hydroxyl groups 

in the CMC molecule.  

 

Figure S3. FTIR spectra of N-CDs 

Further insight into the elemental composition and binding structure of N-CDs was 

recorded by XPS spectrum. As shown in Figure S3a, the wide XPS spectrum demonstrates 

that the obtained N-CDs are mainly composed of carbon, nitrogen, and oxygen. The narrow 

scan of C1s (Figure S3b) presents four main peaks ascribed to the four states of carbon 

bonds (C-C, C-N, C-O and C=O). The N1s scan (Figure S3c) confirm the presence of 

graphitic N, pyridinic N and N–H, suggesting that N has been successfully incorporated 

into the framework of N-CDs in different modes. The O1s scan (Figure S3d) displays two 

peaks of O-H and C=O. 
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Figure S4.  (a) XPS wide survey of N–CDs. The high-resolution XPS spectra of (b) C1s, 

(c) N1s and (d) O1s 

Section III 

Adsorption isotherm 

To explain the performance of the N-CDs towards Cu(II), Langmuir and 

Freundlich models were used. Langmuir isotherm (Eq. S1) assumes that is no 

reduction with adsorbent sites whereas Freundlich (Eq. S2) proposes that there is 

an exponential decline of adsorption surface and energies [47]. In its linear plot, the 

Langmuir and Freundlich isotherm can be expressed as: 

Langmuir model: 

𝐶𝑒

𝑞𝑒
=

𝐶𝑒

𝑞𝑚
+

1

𝑞𝑚𝐾𝐿
                                                                                                                (S1) 

Freundlich model: 
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log 𝑞𝑒 = log 𝐾𝐹 +
1

𝑛
(log 𝐶𝑒)                                                                                           (S2) 

where 𝑞𝑒 and 𝐶𝑒 are adsorption capacity (mg/ g) and Cu(II) concentration (mg/L) in 

solution at equilibrium, respectively. 𝑞𝑚 is the maximum adsorption capacity (mg/ g) and 

𝐾𝐿 is Langmuir constant. Freundlich variable 𝐾𝐹 represents Freundlich adsorption uptake 

of the absorption experiment and n indicates the isotherm nonlinearity. A dimensionless 

factor (RL), can be used to assess the feasibility of adsorption process expressed as: 

𝑅𝐿 =
1

1+𝐾𝐿𝐶𝑜
                                                                                                                                     (S3) 

where 𝐾𝐿 is the Langmuir constant (L mg-1) and Co is the initial concentration (mg/L). The 

adsorption system is favorable if 0 < RL < 1, unfavorable if RL > 1and linear if RL = 1, 

irreversible if RL = 0. 
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