## **Supplementary Materials**

## Development of Quantitative <sup>13</sup>C NMR Characterization and simulation of C, H, O contents for pyrolysis oils based on the <sup>13</sup>C NMR analysis

## Rui Wang, <sup>12</sup> Ying Luo, <sup>12</sup> Hang Jia, <sup>12</sup> Jack R. Ferrell III <sup>3</sup> and Haoxi Ben \*<sup>12</sup>

<sup>1</sup> Southeast University, Nanjing 210096, China

<sup>2</sup> Key Laboratory of Energy Thermal Conversion and Control of Ministry of

Education, Nanjing 210096, China

<sup>3</sup>Catalytic Carbon Transformation & Scaleup Center, National Renewable Energy

Laboratory, Golden, CO, USA.

\*Correspondence should be addressed to Pro. Haoxi Ben

Email: <u>benhaoxi@gmail.com</u>

| Analyte       | CAS Number | Target Concentration ( $w_t$ %) | Formula                 |
|---------------|------------|---------------------------------|-------------------------|
| n-Pentane     | 109-66-0   | 6.66                            | $C_5H_{12}$             |
| n-Hexane      | 110-54-3   | 6.66                            | $C_6H_{14}$             |
| n-Heptane     | 142-82-5   | 6.66                            | $C_7H_{16}$             |
| n-Octane      | 111-65-9   | 6.66                            | $C_8H_{18}$             |
| n-Nonane      | 111-84-2   | 6.66                            | $C_{9}H_{20}$           |
| n-Decane      | 124-18-5   | 6.66                            | $C_{10}H_{22}$          |
| n-Undecane    | 1120-21-4  | 6.66                            | $C_{11}\mathrm{H}_{24}$ |
| n-Dodecane    | 112-40-3   | 13.33                           | $C_{12}H_{26}$          |
| n-Tetradecane | 629-59-4   | 6.66                            | $C_{14}H_{30}$          |
| n-Pentadecane | 629-62-9   | 6.66                            | $C_{15}H_{32}$          |
| n-Hexadecane  | 544-76-3   | 6.66                            | $C_{16}H_{34}$          |
| n-Heptadecane | 629-78-7   | 6.66                            | $C_{17}H_{36}$          |
| n-Octadecane  | 596-45-3   | 6.66                            | $C_{18}H_{38}$          |
| n-Eicosane    | 112-95-8   | 6.66                            | $C_{20}H_{42}$          |

 Table S1. Certified value for standard #1 (ASTM-P-0050)

| Analyte                        | CAS Number | Certified Value ( $w_t$ %) | Formula                          |
|--------------------------------|------------|----------------------------|----------------------------------|
| Cyclopentane                   | 287-92-3   | 1                          | c-C <sub>5</sub> H <sub>10</sub> |
| n-Pentane                      | 109-66-0   | 1                          | n-C <sub>5</sub> H <sub>12</sub> |
| Cyclohexane                    | 110-82-7   | 2                          | c-C <sub>6</sub> H <sub>12</sub> |
| 2,3-Dimethylbutane             | 79-29-8    | 2                          | $C_{6}H_{14}$                    |
| n-Hexane                       | 110-54-3   | 2                          | $C_6H_{14}$                      |
| 1-Hexene                       | 592-41-6   | 1.5                        | $C_{6}H_{12}$                    |
| Methylcyclohexane              | 108-87-2   | 4.25                       | $C_7H_{14}$                      |
| 4-Methyl-1-hexene              | 3769-23-1  | 1.5                        | $C_7H_{14}$                      |
| n-Heptane                      | 142-82-5   | 3.5                        | $C_7H_{16}$                      |
| 1,2-<br>Dimethylcyclohexane    | 583-57-3   | 5                          | $C_{8}H_{16}$                    |
| Isooctane                      | 540-84-1   | 5                          | $C_8H_{18}$                      |
| n-Octane                       | 111-65-9   | 5                          | $C_8H_{18}$                      |
| 1,2,4-<br>Trimethylcyclohexane | 2234-75-5  | 4.25                       | $C_{9}H_{18}$                    |
| n-Nonane                       | 111-84-2   | 4.5                        | $C_{9}H_{20}$                    |
| n-Decane                       | 124-18-5   | 4.25                       | $C_{10}H_{22}$                   |
| n-Undecane                     | 1120-21-4  | 3.5                        | $C_{11}H_{24}$                   |
| n-Dodecane                     | 112-40-3   | 3.25                       | $C_{12}H_{26}$                   |
| Benzene                        | 71-43-2    | 3.25                       | $C_6H_6$                         |
| Toluene                        | 108-88-3   | 2.25                       | $\mathrm{C_7H_8}$                |
| trans-<br>Decahydronaphthalene | 493-02-7   | 4.25                       | $C_{10}H_{18}$                   |
| n-Tetradecane                  | 629-59-4   | 4.5                        | $C_{14}H_{30}$                   |
| Ethylbenzene                   | 100-41-4   | 4.5                        | $C_8H_{10}$                      |
| o-Xylene                       | 95-47-6    | 4.25                       | $C_8H_{10}$                      |
| n-Propylbenzene                | 103-65-1   | 5                          | $C_{9}H_{12}$                    |
| 1,2,4-Trimethylbenzene         | 95-63-6    | 4.5                        | $C_{9}H_{12}$                    |
| 1,2,3-Trimethylbenzene         | 526-73-8   | 5                          | $C_{9}H_{12}$                    |
| 1,2,4,5-<br>Tetramethylbenzene | 95-93-2    | 5                          | $C_{10}H_{14}$                   |
| Pentamethylbenzene             | 700-12-9   | 5                          | $C_{11}H_{16}$                   |

**Table S2.** Certified value for standard #2 (D-5443-93-HTM)

| Feed | Sample | Composition                                               |
|------|--------|-----------------------------------------------------------|
| 1    | KO105  | kerosene + oak wood (1) pyrolysis oil (5 $w_t$ %)         |
| 2    | VO105  | vacuum gas oil + oak wood (1) pyrolysis oil (5 $w_t \%$ ) |
| 3    | KO110  | kerosene + oak wood (1) pyrolysis oil (10 $w_t$ %)        |
| 4    | VO110  | vacuum gas oil + oak wood (1) pyrolysis oil (10 $w_t$ %)  |
| 5    | KO205  | kerosene + oak wood (2) pyrolysis oil (5 $w_t$ %)         |
| 6    | VO205  | vacuum gas oil + oak wood (2) pyrolysis oil (5 $w_t$ %)   |
| 7    | KO210  | kerosene + oak wood (2) pyrolysis oil (10 $w_t$ %)        |
| 8    | VO210  | vacuum gas oil + oak wood (2) pyrolysis oil (10 $w_t$ %)  |

Table S3. The feed types of industrial fluid catalytic cracking units

| Type of carbons       | Range (ppm)                                               | Structure                                                                                      |
|-----------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Carbonyl              | 215.0-166.5                                               | °<br>R´ <sup>"</sup> R'                                                                        |
| Aromatic C-O          | 166.5-142.0                                               | C <sup>O</sup> R                                                                               |
| Aromatic C-C          | 142.0-125.0                                               | C^R                                                                                            |
| Aromatic C-H          | 125.0-95.8                                                | C.H                                                                                            |
| Levoglucosan          | C1 102.3, C2 72.0<br>C3 73.7, C4 71.7<br>C5 76.5, C6 64.9 | $\begin{array}{c} c_{6} & c_{3} \\ c_{6} & O \\ c_{3} - OH \\ c_{1} - c_{2} \\ OH \end{array}$ |
| Aliphatic C-O         | 95.8-60.8                                                 | $R^{H_2}$                                                                                      |
| Methoxyl              | 60.8-55.2                                                 | 0.CH3                                                                                          |
| Aliphatic C-C         | 55.2-0.0                                                  | $R^{H_2} R$                                                                                    |
| Methyl – Aromatic     | 21.6-19.1                                                 | CH3                                                                                            |
| Methyl –<br>Aromatic' | 16.1-15.4                                                 | CH <sub>3</sub><br>O <sup>R</sup>                                                              |

 Table S4. <sup>13</sup>C NMR chemical shift assignment ranges for pyrolysis oils (on the basis of reference<sup>30</sup>).

**Table S5.** The influences for concentrations of relax reagent on the  $T_1$  of bio-oils.

| C=O             | Aromatic carbons | Aliphatic C-O   | Aliphatic C-C  |
|-----------------|------------------|-----------------|----------------|
| 230 - 166.5 ppm | 166.5 - 95.8 ppm | 95.8 - 53.5 ppm | 53.3 - 0.0 ppm |

| 5 mg/ml Cr(acac) <sub>3</sub> | 459.268ms | 211.380ms  | 277.742ms  | 269.905ms |
|-------------------------------|-----------|------------|------------|-----------|
| 1 mg/ml Cr(acac) <sub>3</sub> | 893.397ms | 1244.000ms | 2246.000ms | 785.890ms |

Table S6. In-situ aging test for quantitative <sup>13</sup>C NMR for bio-oil sample produced

from oak wood with 5mg/ml relax reagent, the results shown as carbon *mol*%.

| Functional | Integration |       |       |       |       |       |
|------------|-------------|-------|-------|-------|-------|-------|
| groups     | 8 hs        | 16 hs | 24 hs | 32 hs | 40 hs | 48 hs |

| 0<br>"<br>R⁄ <b>c</b> `R'                             | 16.4 | 16.4 | 15.6 | 16.8 | 16.7 | 16.1 |
|-------------------------------------------------------|------|------|------|------|------|------|
| C <sup>O</sup> R                                      | 7.5  | 7.4  | 7.2  | 7.2  | 7.5  | 6.2  |
| C R                                                   | 1.8  | 1.2  | 2.3  | 2.0  | 1.7  | 3.1  |
| C <sup>-H</sup>                                       | 12.0 | 11.7 | 12.1 | 12.3 | 11.6 | 13.3 |
| $C_{5} C_{4}$ $C_{6} O$ $C_{3} OH$ $C_{1} C_{2}$ $OH$ | 43.0 | 44.7 | 43.9 | 42.3 | 42.5 | 42.1 |
| $R^{H_2}_{O}R$                                        | 31.4 | 30.6 | 29.5 | 30.4 | 31.4 | 30.7 |
| C CH3                                                 | 3.1  | 3.2  | 3.3  | 3.1  | 3.2  | 3.2  |
| $R^{-H_2}$                                            | 16.3 | 15.4 | 15.6 | 16.3 | 16.7 | 16.1 |
| CH <sub>3</sub>                                       | 7.5  | 7.0  | 6.7  | 7.2  | 7.4  | 7.3  |
| CH <sub>3</sub>                                       | 1.0  | 1.0  | 0.9  | 0.9  | 0.9  | 0.9  |

Table S7. In-situ aging test for quantitative <sup>13</sup>C NMR for bio-oil sample produced

from cottonwood with 5mg/ml relax reagent, the results shown as carbon *mol*%.

| Functional | Integratio | on    |       |       |       |
|------------|------------|-------|-------|-------|-------|
| groups     | 0 hs       | 12 hs | 24 hs | 36 hs | 48 hs |

| 0<br>" <b>C</b><br>R´ <b>C</b> R'                              | 9.6  | 7.2  | 6.5  | 3.6  | 4.2  |
|----------------------------------------------------------------|------|------|------|------|------|
| C <sup>O</sup> R                                               | 7.4  | 8.5  | 7.8  | 7.4  | 8.6  |
| C R                                                            | 3.6  | 6.0  | 6.0  | 4.6  | 6.7  |
| C <sup>-H</sup>                                                | 9.9  | 12.1 | 15.0 | 13.0 | 15.2 |
| $C_6 - C_5 - C_4$<br>$C_6 - O - C_3 - OH$<br>$C_1 - C_2$<br>OH | 1.4  | 1.6  | 1.7  | 1.9  | 1.6  |
| $R^{H_2}$                                                      | 25.2 | 24.6 | 24.2 | 26.5 | 24.5 |
| CH3                                                            | 8.7  | 8.6  | 8.5  | 8.7  | 8.4  |
| $R^{H_2}$                                                      | 34   | 33.1 | 32.1 | 34.0 | 31.8 |
| CH3                                                            | 4.4  | 4.2  | 4.1  | 4.5  | 4.0  |
| CH <sub>3</sub><br>OR                                          | 4.7  | 4.7  | 4.5  | 5.1  | 4.5  |

**Table S8.** In-situ aging test for quantitative <sup>13</sup>C NMR for bio-oil sample produced

 from the mixture of cottonwood and coal with 5mg/ml relax reagent, the results

shown as carbon *mol*%.

| Functional | Integration |
|------------|-------------|
|------------|-------------|

| groups                                                                                                        | 0 hs | 12 hs | 24 hs | 36 hs | 48 hs |
|---------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|-------|
| O<br>II<br>R´ <sup>C</sup> `R'                                                                                | 3.9  | 2.2   | 4.4   | 3.6   | 7.1   |
| C <sup>O</sup> R                                                                                              | 2.6  | 2.5   | 4.6   | 5.8   | 3.3   |
| <b>⊂</b> ⊂ R                                                                                                  | 16.3 | 16.2  | 16.6  | 17    | 15.8  |
| C <sup>-H</sup>                                                                                               | 15.1 | 15.1  | 15.8  | 16    | 12.6  |
| $C_{6} \xrightarrow{C_{5} - C_{4}} OH$ $C_{6} \xrightarrow{O} C_{3} - OH$ $C_{1} \xrightarrow{C_{2}} OH$ $OH$ | 1.8  | 1.4   | 1.5   | 1.9   | 1.3   |
| $R^{H_2} \sim R^{-R}$                                                                                         | 20.6 | 18.8  | 18.3  | 18.6  | 16.5  |
| CH3                                                                                                           | 8.1  | 7.4   | 7.6   | 7.3   | 5.6   |
| $R^{H_2} R^{R}$                                                                                               | 34.1 | 36.6  | 33.8  | 32.1  | 36.7  |
| CH <sub>3</sub>                                                                                               | 5.3  | 5.7   | 5.2   | 4.8   | 3.7   |
| CH <sub>3</sub><br>O <sup>-</sup> R                                                                           | 2.3  | 2.1   | 2.2   | 2.1   | 2.1   |



Figure S1. Quantitative <sup>13</sup>C NMR for pyrolysis oil sample without relax reagent, pulse delay was set as 60 s.



Figure S2. Quantitative <sup>13</sup>C NMR for pyrolysis oil sample with 1 mg/ml relax reagent,

pulse delay was set as 15 s.



**Figure S3.** Quantitative <sup>13</sup>C NMR for pyrolysis oil sample with 5 mg/ml relax reagent, pulse delay was set as 15 s.



**Figure S4.** Quantitative <sup>13</sup>C NMR for pyrolysis oil sample with 5 mg/ml relax reagent, pulse delay was set as 3 s.



**Figure S5.** Quantitative <sup>13</sup>C NMR for bio-oil samples produced from oak wood with 5 mg/ml relax reagent, pulse delay was set as 3 s with 8 k scans (blue) and 1 k scans

(red).



Figure S6. In-situ aging test for quantitative <sup>13</sup>C NMR for bio-oil sample produced

from oak wood with 5 mg/ml relax reagent.



**Figure S7.** In-situ aging test for quantitative <sup>13</sup>C NMR for bio-oil sample produced from cottonwood with 5 mg/ml relax reagent.



**Figure S8.** In-situ aging test for quantitative <sup>13</sup>C NMR for bio-oil sample produced from the mixture of cottonwood and coal with 5 mg/ml relax reagent.







Figure S9. The absolute value of absolute error and relative error for oxygen-deficient compounds: (a) Carbon; (b) Hydrogen.



**Figure S10.** Quantitative <sup>13</sup>C NMR and DEPT 135 and DEPT 90 (from top to bottom) for the pyrolysis oil of oak wood 1.



(a)



**Figure S11.** The absolute value of absolute error and relative error for oxygenrich pyrolysis oils: (**a**) Carbon; (**b**) Hydrogen; (**c**) Oxygen.

## References

(30) Ben, H.; Ragauskas, A. J. NMR Characterization of Pyrolysis Oils from Kraft Lignin. *Energy Fuels* **2011**, 25 (5), 2322–2332.

doi:10.1021/ef2001162.