Electronic Supplementary Information (ESI)
 for

A compatibility study on the glycosylation of 4,4'dihydroxyazobenzene

Jonathan Berry, ${ }^{\text {a }}$ Guillaume Despras*a ${ }^{\text {a }}$ and Thisbe K. Lindhorst* ${ }^{\text {a }}$

${ }^{\text {a }}$ Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3,4, D-24118, Kiel, Germany. gdespras@oc.uni-kiel.de and tklind@oc.uni-kiel.de

Table of contents

Synthesis p S2-S12
General methods p S2
Preparation of donors p S2-S6
Glycosylations p S7-S12
O-methylated azobenzenes p S12
NMR spectra of the synthesized compounds p S13-S33
Analytical proofs of the formation of N -dehydro- N -iodo- p - hydroxyphenylhydrazoquinone S4 p S34-S35
Literature references p S36

Synthesis

General methods

All reagents were used as received from chemical suppliers without further purification. Moisture sensitive reactions were carried out in flame-dried glassware and under positive pressure of nitrogen, unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on silica gel plates (GF 254 Merck). Visualization was achieved by UV light and/or by charring with 10 \% sulfuric acid in ethanol, vanillin or $\mathrm{PPh}_{3} / \mathrm{CH}_{3} \mathrm{Ph}$ and ninhydrin, followed by heat treatment at ca. 400 ${ }^{\circ} \mathrm{C}$. Acetonitrile was dried over calcium hydride, dichloromethane and THF over aluminum oxide columns, and pyridine over potassium hydroxide. Optical rotations were measured with a PerkinElmer 241 polarimeter with a sodium D-line (589 nm) and a cuvette of 10 cm path length, in the solvents indicated. Proton (${ }^{1} \mathrm{H}$) and carbon $\left({ }^{13} \mathrm{C}\right)$ nuclear magnetic resonance spectra were recorded on a Bruker DRX-500 spectrometer. Chemical shifts are referenced to internal tetramethylsilane (TMS), or to the residual proton of the NMR solvent. Data are presented as follows: chemical shift, multiplicity ($s=s$ inglet, $d=$ doublet, $t=$ triplet, and $b s=b r o a d$ singlet), coupling constant in Hz and integration. Full assignment of the signals was achieved by using 2D NMR techniques $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and HMBC). All NMR spectra of the E-isomer of azobenzene derivatives were recorded after they were kept in the dark for 20 h at $45^{\circ} \mathrm{C}$. Infrared spectra were recorded a Perkin Elmer FT-IR Paragon 1000 (ATR) spectrometer. ESI mass spectra were recorded on an Esquire-LC instrument from Bruker Daltonics.

Preparation of the glycosyl donors

Donors $1,{ }^{1 \mathrm{a}} 2,{ }^{1 \mathrm{~b}} 4,{ }^{1 \mathrm{c}} 5^{1 \mathrm{~d}}$ and $6^{1 \mathrm{~d}, 1 \mathrm{e}}$ were prepared starting from D -glucose according to known procedures.
Optimisation of the persilylation of Levoglucosan 10

Table S1 Optimisation of the conditions for the persilylation of levoglucosan.

Entry	$\mathbf{M e}_{\mathbf{2}} \boldsymbol{t}$-BuSiCl (eq)	Catalyst $(\mathbf{e q})$	Additive $(\mathbf{e q)}$	Solvent	Temp.	Time	Yield (\%) $\mathbf{1 3}: \mathbf{S 1}$
1	5	Imidazole (7)	-	THF	$0{ }^{\circ} \mathrm{C}$ to rt	20 h	$15: \mathrm{ND}$
2	6	DMAP (1.6)	-	$\mathrm{Pyr} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$ to rt	72 h	$0: 50$
3	6	Imidazole (7)	-	$\mathrm{Pyr}^{\circ} \mathrm{C}$ to rt	48 h	$38: \mathrm{ND}$	
4	6	$\mathrm{NMI}(7)$	$\mathrm{I}_{2}(2.5)$	Pyr	rt	24 h	$80: \mathrm{ND}$

$\mathrm{NMI}=N$-methylimidazole; ND: not determined

1,6-anhydro-2,3,4-tri-O-((tert-butyldimethyl)silyl)- β-D-glucopyranose (13). To a mixture of levoglucosan ($162 \mathrm{mg}, 1.00 \mathrm{mmol}$) and N-methylimidazole ($559 \mu \mathrm{~L}, 7.00 \mathrm{mmol}, 7 \mathrm{eq}$) in dry pyridine $(2.00 \mathrm{~mL})$ was added $\mathrm{Me}_{2} t-\mathrm{BuSiCl}(904 \mathrm{mg}, 6.00 \mathrm{mmol}, 6 \mathrm{eq})$. The mixture was stirred at RT for 30 min and then iodine ($634 \mathrm{mg}, 2.50 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added. The mixture was stirred for 24 h , and then was diluted in EtOAc. It was washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution until the organic phase was colorless. Then it was washed with $1 \mathrm{~N} \mathrm{HCl}(3 x)$, satd. aq. $\mathrm{NaHCO}_{3}(1 x)$ and brine (1x) before being
dried over MgSO_{4} and concentrated in vacuo. Column chromatography (cyclohexane:EtOAc 1:0 to 9:1) afforded the title compound $\mathbf{1 3}$ ($405 \mathrm{mg}, 80 \%$) as a white amorphous solid. The obtained analytical data are in agreement with reported literature. ${ }^{2}$

1,6-anhydro-2,4-di-O-((tert-butyldimethyl)silyl)- β-D-glucopyranose ($\mathbf{S 1}$). To levoglucosan (200 mg , 1.23 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17.0 \mathrm{~mL})$ were added pyridine ($4.20 \mathrm{~mL}, 51.7 \mathrm{mmol}$) and 4dimethylaminopyridine ($297 \mathrm{mg}, 1.97 \mathrm{mmol}, 1.6 \mathrm{eq}$). The resulting suspension was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{Me}_{2} t$-BuSiCl ($1.11 \mathrm{~g}, 7.38 \mathrm{mmol}, 6 \mathrm{eq}$) was added as a solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17.0 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and then was allowed to stir at RT for 3 days. After that time, the solvent was removed in vacuo, the resulting residue was triturated in toluene, the insoluble materials were filtered and the filtrate concentrated. Column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$ 1:0:0 to 7:1.5:1.5) afforded the title compound $\mathbf{S 1}(240 \mathrm{mg}, 50 \%)$ as a white amorphous solid. The obtained analytical data are in agreement with reported literature. ${ }^{2}$
(6-azido-6-deoxy-2,3,4-tri-O-acetyl- α, β-D-glucopyranosyl)-1-(N-phenyl)-2,2,2-trifluoroacetimidate (6). To a solution of 6 -azido-6-deoxy-2,3,4-tri-O-acetyl- α, β-D-glucopyranose ${ }^{1 e}$ ($993 \mathrm{mg}, 3.00 \mathrm{mmol}$) and cesium carbonate ($1.47 \mathrm{~g}, 4.50 \mathrm{mmol}, 1.5 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30.0 \mathrm{~mL})$ was added $2,2,2$-trifluoroN -phenylacetimidoyl chloride ($713 \mu \mathrm{~L}, 4.50 \mathrm{mmol}, 1.5 \mathrm{eq}$) at RT. The mixture was stirred 1.5 h at RT , then it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. The celite pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was concentrated in vacuo. Column chromatography (cyclohexane:EtOAc $8: 2$ to $7: 3$) afforded an anomeric mixture of the title compound $6(1.35 \mathrm{~g}, 90 \%)$ as a white foam. $\beta-6$ (major anomer): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.14(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{\text {para }}\right), 6.86\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right), 5.85(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-1), 5.26(\mathrm{bs}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 5.12-5.04(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4$), 3.79 (bs, 1H, H-5), 3.41 (dd, $\left.\mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=13.6 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 5}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.25$ (dd, $\mathrm{J}_{6 \mathrm{~b}, 6 \mathrm{a}}=13.6 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b}, 5}$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.3,169.5,169.1$ ($3 \mathrm{C}, 3 \mathrm{CH}_{3} \mathrm{CO}$), 143.1 ($\mathrm{Ar}-\mathrm{C}_{\text {ipso }}$), 129.0 ($2 \mathrm{C}, 2 \mathrm{Ar}-\mathrm{C}_{\text {ortho }}$), 124.8 (Ar$\mathrm{C}_{\text {para }}$), 119.4 ($2 \mathrm{Ar}-\mathrm{C}_{\text {meta }}$), 74.5 (C-1), 72.5 (C-2), 70.7 (C-3), $70.2(\mathrm{C}-4), 69.2$ (C-5), 51.0 (C-6), 20.7, 20.6 $\left(3 \mathrm{C}, 3 \mathrm{CH}_{3} \mathrm{CO}\right)$ ppm; ESI HRMS: m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{8} \mathrm{~N}_{4}+\mathrm{Na}^{+}: 552.1204\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$found: 552.1208.

1,6-anhydro-2,3,4-tri-O-benzoyl- β-D-glucopyranose (11). To a cold solution ($0^{\circ} \mathrm{C}$) of levoglucosan $(2.00 \mathrm{~g}, 12.3 \mathrm{mmol})$ in dry pyridine (20.0 mL) was added benzoyl chloride ($8.57 \mathrm{~mL}, 73.8 \mathrm{mmol}, 6 \mathrm{eq}$). The mixture was allowed to stir 1 h at RT then water was added and the resulting suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were successively washed with aq. 1 N $\mathrm{HCl}(3 \mathrm{x})$, satd. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{x})$ and brine (1 x). The organic phase was dried over MgSO_{4}, concentrated in vacuo and the remaining pyridine was co-evaporated with toluene. The residue was then triturated with the minimum amount of toluene, filtered and washed three times with cold toluene, to afford $\mathbf{1 1}(5.36 \mathrm{~g}, 92 \%)$ as white crystals. The obtained analytical data are in agreement with reported literature. ${ }^{3}$

Phenyl 2,3,4-tri-O-benzoyl-1-thio- β-d-glucopyranoside (12). To $\mathbf{1 1}$ ($235 \mathrm{mg}, 0.500 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) were added zinc iodide ($640 \mathrm{mg}, 2.00 \mathrm{mmol}, 4 \mathrm{eq}$) and trimethyl(phenylthio)silane ($240 \mu \mathrm{~L}, 1.25$ $\mathrm{mmol}, 2.5 \mathrm{eq}$). The mixture was stirred under micro-wave irradiation (200 W) at $120^{\circ} \mathrm{C}$ for 25 min . The resulting suspension was filtered through celite, diluted with methanol and treated with Amberlite IR $120 \mathrm{H}^{+}$. The resin was filtered-off and the solvents removed in vacuo. The residue was purified by column chromatography (cyclohexane:EtOAc 9:1 to 7:3) to afford the title compound $\mathbf{1 2}$
($286 \mathrm{mg}, 98 \%$) as a white foam. The obtained analytical data are in agreement with reported literature. ${ }^{4}$

Phenyl-6-azido-6-deoxy-2,3,4-tri-O-benzoyl-1-thio- β-d-glucopyranoside (3). To a solution of 12 (2.67 $\mathrm{g}, 4.57 \mathrm{mmol})$ in dry THF (23.0 mL) was added triphenylphosphine ($1.80 \mathrm{~g}, 6.85 \mathrm{mmol}, 1.5 \mathrm{eq}$). The solution was cooled to $-15^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate ($2.25 \mathrm{~mL}, 11.4 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added dropwise. The mixture was stirred for 15 min at $-15^{\circ} \mathrm{C}$. It was then allowed to warm to $-5^{\circ} \mathrm{C}$. After formation of a precipitate, diphenylphosphoryl azide ($1.48 \mathrm{~mL}, 6.85 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added dropwise. The mixture was then allowed to warm slowly to RT and stirred for 14 h . Then, the solvent was removed in vacuo and the residue was purified by column chromatography (cyclohexane:EtOAc 9:1 to 8:2) to afford the title compound $\mathbf{3}(1.99 \mathrm{~g}, 71 \%)$ as a white foam. The obtained analytical data are in agreement with reported literature. ${ }^{5}$
(6-azido-6-deoxy-2,3,4-tri-O-benzoyl- α, β-D-glucopyranosyl)-1-(N-phenyl)-2,2,2-trifluoroacetimidate (7). To a solution of $3(1.36 \mathrm{~g}, 2.24 \mathrm{mmol})$ in acetone:water ($9: 1,67.0 \mathrm{~mL}$) was added trichlorocyanuric acid ($546 \mathrm{mg}, 2.35 \mathrm{mmol}, 1.05 \mathrm{eq}$) at RT. The mixture was stirred at RT for 30 min , and then the acetone was evaporated. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd. aq. $\mathrm{NaHCO}_{3}(1 x)$, brine (1x), and dried over MgSO_{4}. The solvent was evaporated in vacuo and the crude was purified by column chromatography (cyclohexane:EtOAc 9:1 to 7:3) to afford an α, β mixture of hemiacetals as a white foam. This mixture ($978 \mathrm{mg}, 1.94 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.0 \mathrm{~mL})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.11 \mathrm{~g}, 2.91 \mathrm{mmol}, 1.5 \mathrm{eq})$ and 2,2,2-trifluoro- N -phenylacetimidoyl chloride ($465 \mu \mathrm{~L}, 2.91 \mathrm{mmol}, 1.5 \mathrm{eq}$) were added sequentially at RT. The mixture was stirred for 4 h , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite, and the filtrate concentrated. The crude residue was purified by column chromatography (cyclohexane:EtOAc 9:1 to 7:3) to afford an anomeric mixture of the title compound $7\left(1.03 \mathrm{~g}, 76 \%\right.$) as a white foam. $\boldsymbol{\beta - 7}$ (major anomer): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}), 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, 2Ar-H), 7.58-7.51 (m, 2H, 2Ar-H), 7.46 (t, J = 7.5 Hz, 1H, Ar-H), 7.44-7.36 (m, 4H, 4Ar-H), 7.34-7.28 (m, $4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}$), $7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}), 6.22(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-1), 5.92$ (bs, $1 \mathrm{H}, \mathrm{H}-3), 5.76\left(\mathrm{dd}, \mathrm{J}_{1,2}=\mathrm{J}_{2,3}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.57\left(\mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.12(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.59 (dd, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.1 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.40\left(\mathrm{dd}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=13.1 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right)$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=165.6,165.2,164.8$ (3C, 3 PhCO), 143.0, 133.8, 133.6, 133.5, 129.9, 129.8, 128.8, 128.6, 128.5, 128.4, 124.6, 119.3 (24 C, 24 Ar-C), 74.9 (C-5), 72.3 (2C, C-1, C-3), 70.7 (C-2), 69.6 (C-4), 51.1 (C-6) ppm; ESI HRMS: m/z: calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{8}+\mathrm{Na}^{+}$: 711.1679 [$\mathrm{M}+$ Na^{+}] found: 711.1671.

Phenyl-2,3,4-tri-O-((tert-butyldimethyl)silyl)-1-thio- $\boldsymbol{\alpha}, \boldsymbol{\beta}$-D-glucopyranoside (14). To a mixture of 13 $(1.50 \mathrm{~g}, 2.97 \mathrm{mmol})$ and zinc iodide ($3.80 \mathrm{~g}, 11.9 \mathrm{mmol}, 4 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30.0 \mathrm{~mL})$ was added trimethyl(phenylthio)silane ($1.40 \mathrm{~mL}, 7.43 \mathrm{mmol}, 2.5 \mathrm{eq}$) at RT. The mixture was stirred for 1.5 h at RT then it was filtered through celite. The filtrate was diluted with methanol (20.0 mL) and the solvents removed in vacuo (concentration of the crude mixture in presence of MeOH is sufficient for removing the $6-O-T M S$ groups). The crude was purified by column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O} 95: 2.5: 2.5$ to 8:1:1) to afford $\boldsymbol{\alpha}-14$ ($350 \mathrm{mg}, 19 \%$) and $\boldsymbol{\beta}-14(1.42 \mathrm{~g}, 77 \%)$ as colorless syrups. For characterization purposes, both anomers were separated, but mixtures were used in the further steps. $\boldsymbol{\alpha - 1 4 :}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53-7.49\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.32-2.27$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right), 7.25-7.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\text {para }}\right), 5.58\left(\mathrm{~d}, \mathrm{~J}_{1,2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.20\left(\mathrm{ddd}, J_{5,4}=8.8 \mathrm{~Hz}\right.$, $\left.J_{5,6 \mathrm{a}}=6.0 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.86-3.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-6 \mathrm{a}), 3.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{H}-4), 3.60-3.53\left(\mathrm{dd}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.5 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=136.4\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{ipso}}\right), 131.5(2 \mathrm{C}, 2 \mathrm{Ar}-$
 $63.2(\mathrm{C}-6), 26.2,26.1,25.9\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4,18.2,18.0\left(3 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.5,-3.6,-3.9,-4.3,-4.9$, $5.0\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right)$ ppm; ESI HRMS: m / z : calcd for $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{SSi}_{3}+\mathrm{Na}^{+}: 637.3205\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found: 637.3196. $\boldsymbol{\beta - 1 4 : ~}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.48-7.44\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.31-7.26\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right)$, 7.23$7.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\text {para }}\right), 4.98\left(\mathrm{~d}, \mathrm{~J}_{1,2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 3.92,3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.86-3.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-$ 3), 3.80-3.75 (m, 2H, H-2, H-6a), 3.72 (dd, $\left.J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.4 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b}, 5}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 2.31(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=135.7(\mathrm{Ar}-$
 $75.5(\mathrm{C}-2), 71.3(\mathrm{C}-4), 64.2(\mathrm{C}-6), 26.1,26.0\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2,18.1\left(3 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.1,-4.2,-4.3,-$ $4.8\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{SSi}_{3}+\mathrm{Na}^{+}: 637.3205\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found: 637.3198.

Phenyl-6-O-acetyl-2,3,4-tri-O-((tert-butyldimethyl)silyl)-1-thio- α, β-D-glucopyranoside (8). To $\boldsymbol{\alpha}, \boldsymbol{\beta}$-14 $(420 \mathrm{mg}, 683 \mu \mathrm{~mol})$ in pyridine (6.8 mL) were added DMAP ($16.4 \mathrm{mg}, 137 \mu \mathrm{~mol}, 0.2 \mathrm{eq}$) and $\mathrm{Ac}_{2} \mathrm{O}$ ($970 \mu \mathrm{~L}, 1.02 \mathrm{mmol}, 1.5 \mathrm{eq}$) at RT. The mixture was stirred for 2 h at RT, and the pyridine was coevaporated with toluene. The remaining residue was dissolved in EtOAc, and washed with HCl 1 N (3x), $\mathrm{NaHCO}_{3}(1 x)$ and brine (1x). The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified by column chromatography (cyclohexane:EtOAc 95:5) to afford the title compound 8 ($426 \mathrm{mg}, 95 \%$) as a colorless syrup. $\boldsymbol{\alpha}-8$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57-7.54(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{Ar}$ - $\mathrm{H}_{\text {ortho }}$), 7.29-7.24 (m, $2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {meta }}$), 7.24-7.18 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\text {para }}$), $5.50\left(\mathrm{~d}, \mathrm{~J}_{1,2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, 4.40-4.24 (m, 2H, H-5, H-6a), $4.15\left(\mathrm{dd}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.8 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 4.09-4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.87-3.82 (m, 1H, H-3), 3.75-3.67 (m, 1H, H-4), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 136.2\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{ipso}}\right)$, 132.1 ($2 \mathrm{Ar}-\mathrm{C}_{\text {ortho }}$), 128.9 ($2 \mathrm{Ar}-\mathrm{C}_{\text {meta }}$), 127.0 ($\mathrm{Ar}-\mathrm{C}_{\text {para }}$), 87.4 ($\mathrm{C}-1$), 76.2 (C-3), 73.7 (C-4), 72.7 (C-2), 71.5 (C-5), $64.4(\mathrm{C}-6), 26.3,26.1\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.0\left(\mathrm{CH}_{3} \mathrm{CO}\right), 18.5,18.2\left(3 \mathrm{C}, 3 \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.4,-3.9,-4.1,-4.3$, $-4.9\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{SSi}_{3}+\mathrm{Na}^{+}: 679.3311\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found: 679.3311.
$\boldsymbol{\beta - 8 :}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50-7.46\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.30-7.24\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right), 7.23-$ $7.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\text {para }}\right), 5.00\left(\mathrm{~d}, J_{1,2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.29$ (dd, $\left.J_{6 \mathrm{a}-6 \mathrm{~b}}=11.3 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right)$, 4.23 (dd, $\left.J_{6 b-6 a}=11.3, J_{6 \mathrm{~b}, 5}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.86-3.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4)$, $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=170.8\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 135.7\left(\mathrm{Ar}^{2}-\mathrm{C}_{\text {ipso }}\right), 130.5\left(2 \mathrm{C}, 2 \mathrm{Ar}-\mathrm{C}_{\text {ortho }}\right), 128.8\left(2 \mathrm{C}, 2 \mathrm{Ar}-\mathrm{C}_{\text {meta }}\right), 126.8\left(\mathrm{Ar}-\mathrm{C}_{\text {para }}\right)$, $86.6(\mathrm{C}-1), 80.0(\mathrm{C}-5), 77.4(\mathrm{C}-2), 75.5(\mathrm{C}-3), 70.9(\mathrm{C}-4), 65.5(\mathrm{C}-6), 26.0,25.9\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.0$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 18.1,18.0\left(3 \mathrm{C}, 3 \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.6,-4.0,-4.2,-4.4,-5.0\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{SSi}_{3}+\mathrm{Na}^{+}: 679.3311\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found: 679.3311 .

Phenyl-6-azido-6-deoxy-2,3,4-tri-O-((tert-butyldimethyl)silyl)-1-thio- α, β-D-glucopyranoside (9). To $\boldsymbol{\alpha}, \boldsymbol{\beta}-14(1.12 \mathrm{~g}, 1.82 \mathrm{mmol})$ in dry THF (7.30 mL) was added triphenylphosphine ($716 \mathrm{mg}, 2.73 \mathrm{mmol}$, 1.5 eq) at RT. The mixture was cooled down to $-15{ }^{\circ} \mathrm{C}$, and diisopropylazodicarboxylate ($896 \mu \mathrm{~L}, 4.55$ $\mathrm{mmol}, 2.5 \mathrm{eq}$) was added. The temperature was allowed to raise to $-5^{\circ} \mathrm{C}$ over 30 min , and upon apparition of a precipitate, diphenylphosphorylazide ($588 \mu \mathrm{~L}, 2.73 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added. The
reaction was then stirred at RT for 16 h , then the solvent was removed in vacuo, and the resulting residue was purified by column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 0$ to 9:1) to afford the title compound 9 ($995 \mathrm{mg}, 85 \%$) as a colorless oil. For characterization purposes, both anomers were separated, but mixtures were used in the further steps. $\boldsymbol{\alpha}-9$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56-7.52$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right)$, 7.31-7.26 (m, 2H, 2Ar- $\mathrm{H}_{\text {meta }}$), 7.23-7.18 (m, 1H, Ar-H $\mathrm{H}_{\text {para }}$), $5.59\left(\mathrm{~d}, \mathrm{~J}_{1,2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 4.30\left(\mathrm{ddd}, J_{5,4}=9.0 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=5.9 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.84\left(\mathrm{~d}, J_{3,2}=3.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.73\left(\mathrm{~d}, \mathrm{~J}_{4,5}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.52\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.1 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.22(\mathrm{dd}$, $\left.J_{6 \mathrm{~b}, 6 \mathrm{a}}=13.1 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b}, 5}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 0.98\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.14\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
 76.3 (C-3), $74.6(\mathrm{C}-4), 73.0(\mathrm{C}-2), 72.8(\mathrm{C}-5), 52.5(\mathrm{C}-6), 26.2,26.1,25.9\left(3 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4,18.1,18.0$ $\left(3 \mathrm{C}, 3 \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.4,-3.6,-3.8,-4.4,-4.9,-5.0\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m/z: calcd for $\mathrm{C}_{30} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Si}_{3}+$ $\mathrm{Na}^{+}: 662.3270\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found: 662.3262.
$\beta-9:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.52-7.48\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.31-7.26\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right), 7.24-$ $7.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\text {para }}\right), 5.01\left(\mathrm{~d}, J_{1,2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 3.94,3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, $3.84,3.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.78-3.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.56\left(\mathrm{dd}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 5}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.38$ (dd, $\left.J_{6 \mathrm{~b}, 6 \mathrm{a}}=12.5 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08$
 126.9 ($\mathrm{Ar}-\mathrm{C}_{\text {para }}$), 87.0 (C-1), 80.5 (C-5), 77.5 (C-3), 75.4 (C-2), 71.6 (C-4), 53.5 (C-6), 26.1, 26.0, 25.9 (3C, $\left.3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2,18.1,\left(3 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.1,-4.2,-4.3,-4.8\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m/z: calcd for $\mathrm{C}_{30} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Si}_{3}+\mathrm{Na}^{+}: 662.3270\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found: 662.3262 .

Glycosylations

Procedure $\mathrm{A}: \mathrm{BF}_{3} . \mathrm{OEt}_{2}$ promoted glycosylation.

To a solution of DHAB (1 eq) and donor (2.2 eq) in dry MeCN (45 mM) was added freshly activated molecular sieves ($10 \mathrm{mg} / \mathrm{mg}$ acceptor). The mixture was stirred for 30 min at RT and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ (1.1 eq) was added. After stirring for 2 h at RT , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through celite, and the filtrate washed with satd. aq. NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to afford bis- (15a, 16a or 17a) and monoglycosylated (16b or 17b) compounds (see Table 1 for yields) respectively.

Procedure B: MeOTf promoted glycosylation.

To a suspension of DHAB (1 eq) and glycosyl donor (2.2-2.5 eq) in the appropriate dry solvent (see Table 1 for solvent and concentration) was added freshly activated molecular sieves ($10 \mathrm{mg} / \mathrm{mg}$ acceptor). The mixture was stirred at RT for 30 min and the base (see Table 1; 2.2 eq) was added. Then MeOTf (5.5-6.6 eq) was added and the reaction was stirred at RT until completion. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. The filtrate was subsequently washed with satd. aq. NaHCO_{3} solution and brine. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The resulting residue was purified by column chromatography to afford bis- (18a or 19a) and monoglycosylated (18b or 19b) compounds (see Table 1 for yields) respectively.

Procedure C: BSP/Tf ${ }_{2} \mathrm{O}$ promoted glycosylation.

To a solution of glycosyl donor (0.1 mmol), 2,6-di-tert-butyl-4-methylpyridine (0.11 mmol), 1(phenylsulfinyl)piperidine (BSP) (0.1 mmol) and freshly activated molecular sieves $(10 \mathrm{mg} / \mathrm{mg}$ acceptor) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. The mixture was stirred for 10 min at $-90^{\circ} \mathrm{C}$ and DHAB ($45.0 \mu \mathrm{~mol}$) was added as a solution in a $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bmim}][\mathrm{OTf}]$ mixture (0.5 mL). The mixture was stirred for 1 h between $-90^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ then it was allowed to warm to RT and filtered through celite. The filtrate was washed with satd. aq. NaHCO_{3}, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to afford bis- (18a) and monoglycosylated (18b) compounds (see Table 1 for yields) respectively.

For symmetrical azobenzene bis-glycosides, assignments of NMR data for the azobenzene signals were reported as $H_{\text {ortho }}, H_{\text {meta }}, C_{i p s o}, C_{\text {ortho }}, C_{\text {meta }}, C_{\text {para }}$, regarding to the position of the azo bond. In the case of unsymmetrical compounds (mono-glycosides or $\alpha \beta$ isomers), the following numbering was used (Figure S1).

Figure S1. Numbering of unsymmetrical glycosides for assignment of NMR data.

Screening of bases in the glycosylation with silylated donor 8

Table S2 Screening of glycosylation conditions of DHAB with donors 8. ${ }^{\text {a }}$

Entry	Donor ${ }^{\text {b }}$	Promoter (eq/donor)	$\begin{gathered} \text { Base } \\ \text { (eq/DHAB) } \end{gathered}$	Solvent	Temp.	Bis-glycoside, yield, $\alpha \beta: \beta \beta$ Mono-glycoside, yield, $\alpha: \beta$
$4^{\text {d }}$	9	$\begin{gathered} \hline \text { MeOTf } \\ (2.5) \end{gathered}$	$\begin{aligned} & \hline \text { DBU } \\ & (2.2) \end{aligned}$	DCM	rt	$\begin{gathered} \text { 19a, 20\%, 1:5 } \\ \text { 19b, 30\%, 1:10 } \end{gathered}$
$5^{c, e}$	9	MeOTf (2.5)	$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$	DCM	rt	$\begin{gathered} \text { 19a, 27\%, 1:5 } \\ \text { 19b, 21\%, 1:10 } \end{gathered}$
$6^{c, e}$	9	MeOTf (2.5)	$\begin{gathered} t \text {-BuOK } \\ (2.2) \end{gathered}$	DCM	rt	$\begin{gathered} \text { 19a, 7\%, 1:5 } \\ \text { 19b, 25\%, 1:10 } \end{gathered}$
7	9	MeOTf (2.5)	Collidine (2.2)	DCM	rt	19a, 20\%, 1:3 19b, 35\%, 1:6

${ }^{\text {a }}$ All reactions were performed with $[\mathrm{DHAB}]=0.05 \mathrm{~mol} . \mathrm{L}^{-1}$ unless otherwise stated.
${ }^{\mathrm{b}} 2.2$ eq of donor were used in each glycosylation unless otherwise stated.
${ }^{\text {c }} 2.5$ eq of donor were used
${ }^{d}[D H A B]=0.03 \mathrm{~mol} . \mathrm{L}^{-1}$
${ }^{e}[D H A B]=0.04 \mathrm{~mol} . \mathrm{L}^{-1}$
(E)-p,p'-Bis-(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyloxy) azobenzene (15a). General procedure A was applied to DHAB ($10.0 \mathrm{mg}, 45.0 \mu \mathrm{~mol}$) and donor $5(52.0 \mathrm{mg}, 100 \mu \mathrm{~mol}, 2.2 \mathrm{eq})$. Reagents and conditions: boron trifluoride etherate ($6.30 \mu \mathrm{~L}, 50.0 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$), molecular sieves (100 mg), acetonitrile ($1.00 \mathrm{~mL}, c=45 \mathrm{mM}$). Column chromatography (cyclohexane:EtOAc 1:1) afforded the title compound 15a ($27.0 \mathrm{mg}, 68 \%$) as an orange foam. $[\alpha]^{20}{ }_{\mathrm{D}}=-22.3\left(c=0.5 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.87\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.09\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right), 5.35-5.28(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{H}-2,2 \mathrm{H}-3), 5.21-5.16(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-1,2 \mathrm{H}-4), 4.30\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.3 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{a}\right), 4.19$ (dd, $J_{6 \mathrm{~b}, 6 \mathrm{a}}=12.3 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{~b}$), 3.92 (ddd, $J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \mathrm{H}-5), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta=170.7,170.4,169.5,169.4\left(8 \mathrm{C}, 8 \mathrm{CH}_{3} \mathrm{CO}\right), 158.8$ (2C, 2Ar-C $\mathrm{C}_{\text {para }}$), 148.7 (2C,2Ar$\mathrm{C}_{\text {ipso }}$), 124.5 (4C, 4Ar-Cortho), 117.2 (4C, 4Ar-C meta), 98.8 (C-1), 72.8 (C-2), 72.4 (C-5), 71.3 (C-3), 68.4 (C4), 62.1 (C-6), 20.8, $20.7\left(8 \mathrm{C}, 8 \mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{20}+\mathrm{H}^{+}: 875.2717[\mathrm{M}+$ H^{+}] found: 875.2690.
(E)-p,p'-Bis-(2,3,4-tri-O-acetyl-6-azido-6-deoxy- β-D-glucopyranosyloxy) azobenzene (16a). General procedure A was applied to DHAB ($193 \mathrm{mg}, 900 \mu \mathrm{~mol}$) and donor $6(1.04 \mathrm{~g}, 2.00 \mathrm{mmol}, 2.2 \mathrm{eq})$. Reagents and conditions: boron trifluoride etherate ($126 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 1.1 \mathrm{eq}$), molecular sieves $(1.93 \mathrm{~g})$, acetonitrile ($20.0 \mathrm{~mL}, c=45 \mathrm{mM}$). Column chromatography (cyclohexane:EtOAc 9:1 to 1:1) afforded the title compound 16a ($367 \mathrm{mg}, 48 \%$) as an orange foam as well as the monoglycosylated compound. Since the latter was eluted in the same time as the hydrolysis products of the corresponding donor, acetylation of these fractions needed to be performed to isolate the pure compounds. Column chromatography (cyclohexane:EtOAc 9:1 to 7:3) afforded the monoglycosylated compound 16b ($72.0 \mathrm{mg}, 14 \%$) as an orange foam. The obtained analytical data for 16a are in agreement with reported literature. ${ }^{1 \mathrm{e}}$
(E)-p-(2,3,4-tri-O-acetyl-6-azido-6-deoxy- β-D-glucopyranosyloxy)-p'-acetoxy azobenzene (16b). $[\alpha]^{20}{ }_{\mathrm{D}}=-60.0\left(c=1 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.94-7.89(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-11, \mathrm{H}-14, \mathrm{H}-15)$, 7.24 (d, J = 8.9 Hz, 2H, H-16, H-17), 7.13 (d, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9$), 5.35-5.27 (m, 2H, H-2, H-3), 5.20
$\left(\mathrm{d}, \mathrm{J}_{1,2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.12-5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.83$ (ddd, $J_{5,4}=10 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=7.3 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 3.45\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.3 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 5}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.35\left(\mathrm{dd}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=13.3 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b}, 5}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $6 b), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3} \mathrm{CO}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.3,169.6,169.4,169.3$ (4C, 4CH3CO), 158.9 (C-7), 152.6 (C-18), 150.34 (C-13), 148.7 (C-12), 124.8 (2C, C-14, C-15), 124.1 (2C, C-10, C-11), 122.3 (2C, C-16, C-17), 117.4 (2C, $\mathrm{C}-8, \mathrm{C}-9), 98.8(\mathrm{C}-1), 73.8(\mathrm{C}-5), 72.6,71.2(\mathrm{C}-2, \mathrm{C}-3), 69.5(\mathrm{C}-4), 51.4(\mathrm{C}-6), 21.3\left(\mathrm{Ar}_{-} \mathrm{CH}_{3} \mathrm{CO}\right), 20.8$, 20.7 (3C, $\left.\underline{C}_{3} \mathrm{CO}\right)$ ppm; ESI HRMS: m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{10}+\mathrm{H}^{+}: 570.1831\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 570.1829.
(E)-p,p'-Bis-(2,3,4-tri-O-benzoyl-6-azido-6-deoxy- β-d-glucopyranosyloxy) azobenzene (17a). General procedure A was applied to DHAB ($97.0 \mathrm{mg}, 450 \mu \mathrm{~mol}$) and donor $7(690 \mathrm{mg}, 1.00 \mathrm{mmol}, 2,2 \mathrm{eq})$. Reagents and conditions: boron trifluoride etherate ($63.0 \mu \mathrm{~L}, 500 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$), molecular sieves $(970 \mathrm{mg})$, acetonitrile ($10.0 \mathrm{~mL}, c=45 \mathrm{mM}$). Column chromatography (PhMe:EtOAc 9:1 to 8:2 to separate mono- from bis-glycosylated products; then cyclohexane:acetone $8: 2$) afforded the title compound 17a ($213 \mathrm{mg}, 38 \%$) as an orange foam as well as the monoglycosylated compound. Since the latter was eluted in the same time as the hydrolysis products of the corresponding donor, acetylation of these fractions needed to be performed to isolate the pure compound. Column chromatography (cyclohexane:EtOAc 8:2) afforded 17b ($85.0 \mathrm{mg}, 25 \%$) as an orange foam. 17a: $[\alpha]^{20}{ }_{\mathrm{D}}=+61.7\left(c=1 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98-7.92\left(\mathrm{~m}, 8 \mathrm{H}, 8 \mathrm{Ar}-\mathrm{H}_{\mathrm{Bz}}\right), 7.87-7.83(\mathrm{~m}$, $8 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\mathrm{Bz}}+4 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}$), 7.56-7.49 (m, 4H, 4Ar- H_{Bz}), 7.47-7.42 (m, 2H, 2Ar- H_{Bz}), 7.41-7.35 (m, 8H, 8ArH_{Bz}), 7.33-7.28 (m, 4H, 4Ar-H Hz), $7.14\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {meta }}\right), 6.00\left(\mathrm{dd}, J_{3,2}=J_{3,4}=9.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\right.$ 3), 5.81 (dd, $J_{2,3}=9.6 \mathrm{~Hz}, J_{2,1}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2$), 5.58 (dd, $\left.J_{4,3}=J_{4,5}=9.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-4\right), 5.49\left(\mathrm{~d}, J_{1,2}=\right.$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1$), 4.13 (ddd, $J_{5,4}=9.6 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-5$), 3.62 (dd, J $\mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=13.5$ $\left.\mathrm{Hz}, J_{6 \mathrm{a}, 5}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{a}\right), 3.48$ (dd, $\left.J_{6 \mathrm{~b}, 6 \mathrm{a}}=13.5 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{~b}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.9,165.5,165.2$ ($6 \mathrm{C}, 6 \mathrm{PhCO}$), 158.8 (2C, $2 \mathrm{Ar}^{2}-\mathrm{C}_{\text {para }}$), 148.8 (2C, 2Ar- $\mathrm{C}_{\text {ipso }}$), 133.9, 133.6, 133.5 ($6 \mathrm{C}, 6 \mathrm{Ar}-\mathrm{C}_{\mathrm{Bz}}$), 130.0, 129.9 (12C, 12Ar-C C_{Bz}), 129.1 (2C, 2Ar-C C_{Bz}), 128.8, 128.7 ($6 \mathrm{C}, 6 \mathrm{Ar}-\mathrm{C}_{\mathrm{Bz}}$)
 (2C-5), 72.6 (2C-3), 71.7 (2C-2), 70.2 (2C-4), 51.6 (2C-6) ppm; ESI HRMS: m/z: calcd for $\mathrm{C}_{66} \mathrm{H}_{52} \mathrm{O}_{16} \mathrm{~N}_{8}+$ $\mathrm{H}^{+}: 1213.3574\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 1213.3579.
(E)-p-(2,3,4-tri-O-benzoyl-6-azido-6-deoxy- β-D-glucopyranosyloxy)-p'-acetoxy azobenzene (17b). $[\alpha]^{20}{ }_{\mathrm{D}}=+20.2\left(c=1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99-7.93\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\mathrm{Bz}}\right), 7.92(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-14, \mathrm{H}-15), 7.89$ (d, J = 9.0 Hz, 2H, H-10, H-11), 7.88-7.84 (m, 2H, 2Ar-H H_{Bz}), 7.57-7.50 (m, 2H,
 $9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17$), 7.16 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9$), 5.99 (dd, $J_{3,2}=J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.83 (dd, $\left.J_{2,3}=9.6 \mathrm{~Hz}, J_{2,1}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.59\left(\mathrm{dd}, J_{4,3}=J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.50\left(\mathrm{~d}, J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 4.14$ (ddd, $\left.J_{5,4}=9.6 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.62$ (dd, $J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.5 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 3.49 (dd, $\left.J_{6 \mathrm{~b}, 6 \mathrm{a}}=13.5 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.3\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 165.9,165.5,165.2$ (3C,3PhCO), 159.0 (C-7), 152.6 (C-18), 150.3 (C-13), 148.8 (C-12), 133.9, 133.6, 133.5 (3C, 3Ar-C $C_{B z}$), 130.0, 130.0, 129.9 ($6 \mathrm{C}, 6 \mathrm{Ar}-\mathrm{C}_{\mathrm{Bz}}$), 129.1, 128.7, 128.7, 128.6, 128.6, 128.5 ($9 \mathrm{C}, 9 \mathrm{Ar}-\mathrm{C}_{\mathrm{Bz}}$), 124.8 (2C, C-11, C-10), 124.1 (2C, C-14, C-15), 122.3 (2C, C16, C-17), 117.6 (2C, C-8, C-9), 99.5 (C-1), 74.4 (C-5), 72.6 (C-3), 71.7 (C-2), 70.2 (C-4), 51.6 (C-6), 21.3 $\left(\mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{O}_{10} \mathrm{~N}_{5}+\mathrm{H}^{+}: 756.2300\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 756.2297.
(E)-p,p’-Bis-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-O-acetyl- β-D-glucopyranosyloxy) azobenzene ($\beta \beta-18 \mathrm{a}$).
Route 1. General procedure B was applied to DHAB ($10.0 \mathrm{mg}, 45.0 \mu \mathrm{~mol}$) and donor $8(66.0 \mathrm{mg}, 100$ $\mu \mathrm{mol}, 2.2 \mathrm{eq}$). Reagents and conditions: methyl trifluoromethanesulfonate ($33.0 \mu \mathrm{~L}, 304 \mu \mathrm{~mol}, 6.6$ eq), 2,6-di-tert-butyl-4-methylpyridine ($20.0 \mathrm{mg}, 100 \mu \mathrm{~mol}, 2.2$ eq), molecular sieves (100 mg), dichloromethane ($1.00 \mathrm{~mL}, c=45 \mathrm{mM}$). Column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ to $0: 1$ then cyclohexane:EtOAc 7:3) afforded an $\alpha \beta: \beta \beta$ (1:5) anomeric mixture of the title compound 18 a (30 mg , 50%) as well as an $\alpha: \beta$ ($1: 10$) anomeric mixture of monoglycosylated compound $\mathbf{1 8 b}$ ($7 \mathrm{mg}, 20 \%$).
Route 2. General procedure C was applied to DHAB ($10.0 \mathrm{mg}, 45.0 \mu \mathrm{~mol}$) and donor $9(66.0 \mathrm{mg}, 100$ $\mu \mathrm{mol}, 2.2 \mathrm{eq}$). Reagents and conditions: 1-(phenylsulfinyl)piperidine ($21.0 \mathrm{mg}, 100 \mu \mathrm{~mol}, 2.2 \mathrm{eq}$), trifluoromethansulfonic anhydride ($17.0 \mu \mathrm{~L}, 100 \mu \mathrm{~mol}, 2.2$ eq), 2,6-di-tert-butyl-4-methylpyridine (23 $\mathrm{mg}, 110 \mu \mathrm{~mol}, 2.5$ eq), molecular sieves (100 mg), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:bmimOTf ($9: 1,1.00 \mathrm{~mL}, c=45 \mathrm{mM}$). Column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad 1: 1$ to $0: 1$ then cyclohexane:EtOAc 7:3) afforded an $\alpha \beta: \beta \beta$ (1:10) anomeric mixture of the title compound $\mathbf{1 8 a}$ ($11 \mathrm{mg}, 18 \%$) as well as an $\alpha: \beta$ (1:5) anomeric mixture of monoglycosylated compound $\mathbf{1 8 b}$ ($\mathbf{7} \mathbf{~ m g}, 20 \%$).
For a proper characterisation of the $\alpha \beta$ anomer, the $\alpha \beta, \beta \beta$ mixture isolated after the glycosylation was enriched in $\alpha \beta$ isomer after silica gel chromatography (see figures S24-S29).
$\beta \beta$-18a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.87\left(\mathrm{~d}, J=9.0 \mathrm{~Hz} 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.06$ (d, J=9.0 Hz 4H, 4Ar$H_{\text {meta }}$), $5.50\left(\mathrm{~d}, J_{1,2}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1\right), 4.31\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.1 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{a}\right), 4.26$ (dd, $J_{6 \mathrm{~b}, 6 \mathrm{a}}$ $\left.=11.1 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b}, 5}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{~b}\right), 4.21-4.16(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5), 3.96\left(\mathrm{~d}, \mathrm{~J}_{2,1}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2\right), 3.90-3.83$ $(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{H}-3,2 \mathrm{H}-4), 2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CO}\right), 0.94\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.16\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.12(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), $0.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.7\left(2 \mathrm{C}, 2 \mathrm{CH}_{3} \mathrm{CO}\right), 159.1(2 \mathrm{C}, 2 \mathrm{Ar}-$ $\mathrm{C}_{\text {para }}$), 148.0 (2C, $2 \mathrm{Ar}-\mathrm{C}_{\text {ipso }}$), 124.4 ($4 \mathrm{C}, 4 \mathrm{Ar}-\mathrm{C}_{\text {ortho }}$), 116.2 ($4 \mathrm{C}, 4 \mathrm{Ar}-\mathrm{C}_{\text {meta }}$), 99.0 ($2 \mathrm{C}-1$), 79.0 (2C-5), 78.0 (2C-3), $76.5(2 \mathrm{C}-2), 70.6(2 \mathrm{C}-4), 65.1(2 \mathrm{C}-6), 26.0,25.9\left(18 \mathrm{C}, 6 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.9\left(2 \mathrm{C}, 2 \mathrm{CH}_{3} \mathrm{CO}\right), 18.2,18.1$ $\left(6 \mathrm{C}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.0,-4.3,-4.4,-4.6,-4.7,-4.9\left(12 \mathrm{C}, 12 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m/z: calcd for $\mathrm{C}_{64} \mathrm{H}_{118} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Si}_{6}+\mathrm{H}^{+}: 1307.7271\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 1307.7257.
(E)-p-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-O-acetyl- α-D-glucopyranosyloxy)-p'-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-O-acetyl- β-D-glucopyranosyloxy) azobenzene ($\alpha \beta$-18a).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.89-7.84\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.19(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9), 7.06(\mathrm{~d}, \mathrm{~J}$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 5.52\left(\mathrm{~d}, \mathrm{~J}_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\alpha}\right), 5.50\left(\mathrm{~d}, \mathrm{~J}_{1,2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\beta}\right), 4.34-4.24(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-5_{\alpha}, \mathrm{H}-6 \mathrm{a}_{\alpha}, \mathrm{H}-6 \mathrm{a}_{\beta}, \mathrm{H}-6 \mathrm{~b}_{\beta}$), 4.22-4.16 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}_{\alpha}, \mathrm{H}-5_{\beta}$), 4.06-4.03 (m, $1 \mathrm{H}, \mathrm{H}-2_{\alpha}$), 3.99-3.93 (m , $2 \mathrm{H}, \mathrm{H}-3_{\alpha}, \mathrm{H}-2_{\beta}$), 3.90-3.83 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3_{\beta}, \mathrm{H}-4_{\beta}$), 3.70-3.67 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4_{\alpha}$), $2.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{\beta}\right), 1.95(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{\alpha}\right), 0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89$ $\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.15(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.0\left(\mathrm{CH}_{3} \mathrm{CO}_{\alpha}\right)$, $170.7\left(\mathrm{CH}_{3} \mathrm{CO}_{\beta}\right), 159.6$ (C-7), 159.1 (C18), 148.0 (C-13), 147.9 (C-12), 124.4 (2C, C-14, C-15), 124.3 (2C, C-10, C-11), 117.1 (2C, C-8, C-9), $116.2(2 C, C-16, C-17), 99.0\left(C-1_{\beta}\right), 94.9\left(C-1_{\alpha}\right), 79.2(C-5 \beta), 78.0(C-$
 26.1, $\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \alpha\right.$-side), 26.0, $25.9\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \beta\right.$-side), $21.0\left(\underline{\mathrm{C}} \mathrm{H}_{3} \mathrm{CO}, \alpha\right.$-side $), 20.9\left(\underline{\mathrm{C}} \mathrm{H}_{3} \mathrm{CO}, \beta\right.$ side), 18.5, 18.2, $18.1\left(6 \mathrm{C}, 6 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.2,-3.7,-4.0,-4.1,-4.3,-4.4,-4.6,-4.7,-4.8,-4.9\left(12 \mathrm{C}, \mathrm{CH}_{3}\right)$ ppm; ESI HRMS: m / z : calcd for $\mathrm{C}_{64} \mathrm{H}_{118} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Si}_{6}+\mathrm{H}^{+}: 1307.7271\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 1307.7257.
(E)-p-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-O-acetyl- β-D-glucopyranosyloxy)-p'-hydroxy
azobenzene ($\beta-\mathbf{1 8 b}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.87-7.79(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-11, \mathrm{H}-14, \mathrm{H}-15$), 7.06 (d ,
$J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9), 6.91(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 5.91(\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{OH}), 5.52\left(\mathrm{~d}, \mathrm{~J}_{1,2}=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1$), 4.34 (dd, $\left.J_{6 \mathrm{a}-6 \mathrm{~b}}=11.2 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 4.28$ (dd, $J_{6 \mathrm{~b}-6 \mathrm{a}}=11.2 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{~b}), 4.23,4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.97\left(\mathrm{~d}, \mathrm{~J}_{2,1}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.90\left(\mathrm{~d}, \mathrm{~J}_{3,4}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.87\left(\mathrm{~d}, \mathrm{~J}_{4,3}\right.$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $0.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 0.02(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 159.0(\mathrm{C}-7), 158.3(\mathrm{C}-18), 147.9(\mathrm{C}-12), 147.2$ (C-13), 124.8 (2C, C-14, C-15), 124.4 (2C, C-10, C-11), 116.2 (2C, C-8, C-9), 115.9 (2C, C-16, C-17), 98.9 (C-1), $78.9(\mathrm{C}-5), 77.9(\mathrm{C}-3), 76.4(\mathrm{C}-2), 70.6(\mathrm{C}-4), 65.2(\mathrm{C}-6), 26.0,25.9\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, 18.2, $18.1\left(3 \mathrm{C}, 3 \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.1,-4.3,-4.4,-4.6,-4.7,-4.9\left(6 \mathrm{C}, 6 \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{Si}_{3}+\mathrm{H}^{+}: 761.4043\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 761.4017.
(E)-p-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-O-acetyl- α-D-glucopyranosyloxy)-p'-hydroxy
azobenzene ($\boldsymbol{\alpha}-18 b) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.88-7.79\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{Ar}\right.$ - $\mathrm{H}_{\text {ortho }}$), $7.18(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9), 6.91(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 5.53\left(\mathrm{~d}, \mathrm{~J}_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.32-4.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$, $\mathrm{H}-6 \mathrm{a}), 4.25,4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.72,3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 1.97 (s, 3H, CH3 CO), $0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 0.16 (s, 3H, CH3), $0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{Si}_{3}+\mathrm{H}^{+}$: $761.4043\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 761.4017. Since the isolated amount of $\boldsymbol{\alpha}, \boldsymbol{\beta} \mathbf{- 1 8 b}$ (α minor anomer) was too small, no proper ${ }^{13} \mathrm{C}-\mathrm{NMR}$ characterization of the α species could be achieved.
(E)-p,p'-bis-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-azido-6-deoxy- β-D- glucopyranosyloxy) azobenzene ($\beta \boldsymbol{\beta}-19 \mathrm{a}$). General procedure B was applied to DHAB ($21.0 \mathrm{mg}, 97.0 \mu \mathrm{~mol}$) and donor 9 ($136 \mathrm{mg}, 212 \mu \mathrm{~mol}, 2.2 \mathrm{eq}$). Reagents and conditions: methyl trifluoromethanesulfonate ($70.0 \mu \mathrm{~L}$, $636 \mu \mathrm{~mol}, 6.6 \mathrm{eq}$), 2,6-di-tert-butyl-4-methylpyridine ($44.0 \mathrm{mg}, 212 \mu \mathrm{~mol}, 2.2 \mathrm{eq}$), molecular sieves $(210 \mathrm{mg})$) dichloromethane ($2.12 \mathrm{~mL}, c=45 \mathrm{mM}$). Column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 9.1$ to 7:3 then cyclohexane:EtOAc 7:3) afforded an $\alpha \beta: \beta \beta$ (1:4) anomeric mixture of the title compound 19a ($13 \mathrm{mg}, 10 \%$) as well as an $\alpha: \beta(1: 8)$ anomeric mixture of monoglycosylated compound 19 b (11 $\mathrm{mg}, 14 \%)$. For a proper characterisation of the $\alpha \beta$ anomer, the $\alpha \beta, \beta \beta$ mixture isolated after the glycosylation was enriched in $\alpha \beta$ isomer after silica gel chromatography (see figures S32-S36).
$\beta \beta-19 \mathrm{a}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.87\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{Ar}-$ $\left.H_{\text {meta }}\right), 5.50\left(\mathrm{~d}, \mathrm{~J}_{1,2}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1\right), 4.11-4.05(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5), 3.96\left(\mathrm{~d}, \mathrm{~J}_{2,1}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2\right), 3.89$, (bs, $2 \mathrm{H}, 2 \mathrm{H}-3$), $3.85(\mathrm{bs}, 2 \mathrm{H}, 2 \mathrm{H}-4), 3.61\left(\mathrm{dd}, \mathrm{J}_{6 a, 5}=6.9 \mathrm{~Hz}, \mathrm{~J}_{6 a-6 b}=12.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{a}\right.$), 3.48 (dd, $\mathrm{J}_{6 b, 5}=$ $\left.7.4 \mathrm{~Hz}, \mathrm{~J}_{6 b-6 a}=12.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6 \mathrm{~b}\right), 0.94\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.02$
 4Ar-C ${ }_{\text {ortho }}$), 116.2 (4C, $4 \mathrm{Ar}-\mathrm{C}_{\text {meta }}$), 99.1 (2C-1), 79.8 (2C-5), 78.2 (2C-3), 76.5 (2C-2), 70.9 (2C-4), 53.2 (2C-6), 26.0, $25.9\left(18 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2,18.1,18.0\left(6 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.1,-4.3,-4.5,-4.7,-4.8\left(12 \mathrm{C}, \mathrm{CH}_{3}\right)$ ppm; ESI HRMS: m / z : calcd for $\mathrm{C}_{60} \mathrm{H}_{112} \mathrm{O}_{10} \mathrm{~N}_{8} \mathrm{Si}_{6}+\mathrm{H}^{+}: 1273.7190\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 1273.7193.
(E)-p-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-azido-6-deoxy- α-D-glucopyranosyloxy)-p'-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-azido-6-deoxy- β-D-glucopyranosyloxy) azobenzene ($\alpha \beta-19 \mathrm{a}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.90-7.85\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}_{\text {ortho }}\right), 7.18$ (d, J = $\left.9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9\right), 7.07$ (d, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 5.57\left(\mathrm{~d}, \mathrm{~J}_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\alpha}\right), 5.50\left(\mathrm{~d}, \mathrm{~J}_{1,2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\beta}\right), 4.36-4.32(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-5_{\alpha}\right), 4.11-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5_{\beta}, \mathrm{H}-2_{\alpha}\right), 3.96\left(\mathrm{~d}, \mathrm{~J}_{2,1}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\beta}\right), 3.94,3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\alpha}\right)$, 3.91$3.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\beta}\right), 3.87-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4_{\beta}\right), 3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \alpha), 3.61\left(\mathrm{dd}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 5}=6.9 \mathrm{~Hz}\right.$,
$1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}_{\beta}$), 3.52,3.45 (m, 2H, H-6b $\left.{ }_{\beta}, \mathrm{H}-6 \mathrm{a}_{\alpha}\right), 3.20\left(\mathrm{dd}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=13.3 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 5}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}_{\alpha}\right), 0.96(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86$
 CH_{3}), $0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.02(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m/z: calcd for $\mathrm{C}_{60} \mathrm{H}_{112} \mathrm{O}_{10} \mathrm{~N}_{8} \mathrm{Si}_{6}+\mathrm{H}^{+}: 1273.7190\left[\mathrm{M}+\mathrm{H}^{+}\right]$ found: 1273.7193; Since the isolated amount of $\alpha \beta, \beta \beta-19$ a ($\alpha \beta$ minor isomer) was too small, no proper ${ }^{13} \mathrm{C}$-NMR characterization of the α, β species by could be achieved.
(E)-p-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-deoxy-6-azido- β-D-glucopyranosyloxy)-p'-hydroxy
azobenzene ($\beta-19 b$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.87(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-11$), 7.83 (d, J=8.9 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-14, \mathrm{H}-15), 7.07(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9), 6.93(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 5.51\left(\mathrm{~d}, \mathrm{~J}_{1,2}=\right.$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.11-4.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.96\left(\mathrm{~d}, \mathrm{~J}_{2,1}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.86-$ $3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.61\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.4 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.48$ (dd, $\mathrm{J}_{6 \mathrm{~b}, 6 \mathrm{a}}=12.4 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.17$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.14\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 159.0 (C-7), 158.0 (C-18), 148.0 (C-12), 147.4 (C-13), 124.8 (2C, C-14, C-15), 124.4 (2C, C-10, C-11), 116.2 ($2 \mathrm{C}, \mathrm{C}-8, \mathrm{C}-9$), 115.9 (2C, C-14, C-15), 99.1 ($\mathrm{C}-1$), 79.8 (C-5), 78.2 (C-3), 76.5 (C-2), $70.9(\mathrm{C}-4)$, 53.2 (C-6), 26.0, $25.9\left(9 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2,18.1,18.0\left(3 \mathrm{C}, 3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.1,-4.3,-4.5,-4.7,-4.8$ (6C, $6 \mathrm{CH}_{3}$) ppm; ESI HRMS: m/z: calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{6} \mathrm{~N}_{5} \mathrm{Si}_{3}-\mathrm{H}^{+}: 742.3857$ [$\mathrm{M}-\mathrm{H}^{+}$] found: 742.3861.
(E)-p-(2,3,4-tri-O-((tert-butyldimethyl)silyl)-6-deoxy-6-azido- α-D-glucopyranosyloxy)-p'-hydroxy
azobenzene (α-19b). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.89-7.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-11, \mathrm{H}-14, \mathrm{H}-15$), 7.18 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}-8, \mathrm{C}-9), 6.93(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 5.57\left(\mathrm{~d}, J_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.34$ (ddd, $\left.J_{5,4}=8.9 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=5.5 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.94,3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.75$ (d, $\left.J_{4,5}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.48\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.3 \mathrm{~Hz}, J_{6 \mathrm{a}, 5}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.21$ (dd, $J_{6 \mathrm{~b}, 6 \mathrm{a}}=13.3 \mathrm{~Hz}$, $\left.J_{6 \mathrm{~b}, 5}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.22(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 0.16 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{6} \mathrm{~N}_{5} \mathrm{Si}_{3}-\mathrm{H}^{+}$: 742.3857 [$\mathrm{M}-\mathrm{H}^{+}$] found: 742.3861 ; Since the isolated amount of $\boldsymbol{\alpha}, \boldsymbol{\beta}-\mathbf{2 0 b}$ (α minor anomer) was too small, no proper ${ }^{13} \mathrm{C}-\mathrm{NMR}$ characterization of the α species by could be achieved.

O-methylated azobenzenes

To a suspension of DHAB ($214 \mathrm{mg}, 1.00 \mathrm{mmol}$) in acetonitrile (10 mL) were added diisopropylethylamine ($0.348 \mathrm{~mL}, 2.00 \mathrm{mmol}$) and methyltrifluoromethanesulfonate ($0.164 \mathrm{~mL}, 1.50$ mmol) at RT. The mixture was stirred for 2 h at this temperature and then was concentrated and purified by column chromatography (cyclohexane-ethyl acetate) to afford 4, 4^{\prime}-dimethoyazobenzene $\mathbf{S 2}$ (34 mg, 11%) and 4-hydroxy-4'-methoxyazobenzene S3 ($72.8 \mathrm{mg}, 32 \%$).
p, \mathbf{p}^{\prime}-dimethoxyazobenzene (S2). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.93-7.78$ ($\mathrm{m}, 4 \mathrm{H}, 4-\mathrm{H}_{\text {ortho }}$), 7.05-6.87 $\left(\mathrm{m}, 4 \mathrm{H}, 4-\mathrm{H}_{\text {meta }}\right), 3.89(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.7$ (2C, $\left.\mathrm{Ar}-\mathrm{C}_{\text {para }}\right), 147.2$ (2C, Ar-C $\mathrm{C}_{\text {ipso }}$), 124.5 (4C, Ar-C $\mathrm{C}_{\text {ortho }}$), 111.3 (4C, Ar-C $\mathrm{C}_{\text {meta }}$), 55.7 ($2 \mathrm{C}, \mathrm{OCH}_{3}$) ppm; ESI HRMS: m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2}+\mathrm{H}^{+}: 243.1128\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 243.1124.
p-methoxy-p'-hydroxyazobenzene (S3). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.90-7.80\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\text {ortho }}\right)$, 7.02-6.98 (m, 2H, 2- $\mathrm{H}_{\text {meta }}$, OMe side), 6.94-6.90 (m, $2 \mathrm{H}, 2-\mathrm{H}_{\text {meta }}, \mathrm{OH}$ side), 5.51 , ($\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}$), 3.88 (s , $3 \mathrm{H}, \mathrm{OMe}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.8$ ($1 \mathrm{Ar}-\mathrm{C}_{\text {para }}$, OMe side), 157.9 ($1 \mathrm{Ar}-\mathrm{C}_{\text {para }}, \mathrm{OH}$ side), 147.3 ($1 \mathrm{Ar}-\mathrm{C}_{\text {ipso, }}, \mathrm{OH}$ side), 147.1 ($1 \mathrm{Ar}_{-\mathrm{C}_{\text {ipso }},}$ OMe side), 124.7 (2C, $2 \mathrm{Ar}-\mathrm{C}_{\text {ortho, }}, \mathrm{OH}$ side), 124.5 (2C, $2 \mathrm{Ar}-$
$\mathrm{C}_{\text {ortho, }}$ OMe side), 115.9 (2C, $2 \mathrm{Ar}-\mathrm{C}_{\text {meta }}, \mathrm{OH}$ side), 114.3 (2C, $2 \mathrm{Ar}-\mathrm{C}_{\text {meta }}, \mathrm{OH}$ side), $55.7\left(\mathrm{OCH}_{3}\right) \mathrm{ppm}$; ESI HRMS: m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2}+\mathrm{H}^{+}$: $229.0972\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 229.0968.

NMR spectra of the synthesized compounds

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{\beta}-\mathbf{6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S3: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\beta}-6\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{\beta}-\mathbf{7}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S5: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\beta}-\mathbf{7}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{\alpha} \mathbf{- 1 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S7: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\alpha}-\mathbf{1 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S8: ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{\beta} \mathbf{- 1 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S9: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\beta}-14\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of $\alpha, \beta-8\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S11: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\alpha}, \boldsymbol{\beta}-\mathbf{8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{\alpha}-\mathbf{9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S13: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\alpha}-\mathbf{9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S14: ${ }^{1} \mathrm{H}$ NMR spectrum of β-9 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S15: ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{\beta - 9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum of $15 \mathrm{a}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6 b}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S21: ${ }^{13} \mathrm{C}$ NMR spectrum of $17 \mathrm{a}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S22: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S23: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 b}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\boldsymbol{\alpha} \boldsymbol{\beta}: \boldsymbol{\beta} \boldsymbol{\beta} ; 47: 53$) of $\mathbf{1 8 a}$, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S25: ${ }^{13} \mathrm{C}$ NMR spectrum of a mixture ($\boldsymbol{\alpha} \boldsymbol{\beta}: \beta \boldsymbol{\beta} ; 47: 53$) of $18 \mathrm{a},\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right.$).

Figure S26: Expansion of the ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\alpha \boldsymbol{\beta}: \beta \boldsymbol{\beta} ; 47: 53$) of 18 a in the aromatic region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S27: Expansion of the ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\alpha \boldsymbol{\beta}: \boldsymbol{\beta} \boldsymbol{\beta}$; 47:53) of 18 a in the carbohydrate region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S28: Expansion of the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of a mixture ($\alpha \boldsymbol{\beta}: \beta \boldsymbol{\beta} ; 47: 53$) of $\mathbf{1 8 a}$ in the carbohydrate region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S29: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of a mixture ($\alpha \beta: \beta \beta$; 47:53) of 18 a in the carbohydrate region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S30: ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\beta} ; 7: 93$) of $\mathbf{1 8 b},\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S31: ${ }^{13} \mathrm{C}$ NMR spectrum of a mixture ($\alpha: \beta ; 7: 93$) of $\mathbf{1 8 b},\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right.$).

Figure S32: ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\boldsymbol{\alpha} \boldsymbol{\beta}: \boldsymbol{\beta} \boldsymbol{\beta} ; 44: 56$) of $\mathbf{1 9 a}$, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S33: ${ }^{13} \mathrm{C}$ NMR spectrum of a mixture ($\boldsymbol{\alpha} \boldsymbol{\beta}: \boldsymbol{\beta} \boldsymbol{\beta}$; 44:56) of 19 a , ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S34: Expansion of the ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture $(\alpha \beta: \beta \beta ; 44: 56)$ of 19 a in the aromatic region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S35: Expansion of the ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\alpha \boldsymbol{\beta}: \beta \boldsymbol{\beta} ; 44: 56$) of 19a in the carbohydrate region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S36: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of a mixture ($\alpha \beta: \beta \beta ; 44: 56$) of $\mathbf{1 9 a}$ in the carbohydrate region, ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S37: ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture ($\boldsymbol{\alpha}: \boldsymbol{\beta} ; 13: 87$) of $\mathbf{1 9 b},\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right.$).

Figure S38: ${ }^{13} \mathrm{C}$ NMR spectrum of a mixture ($\alpha: \beta ; 13: 87$) of $19 b,\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right.$).

Figure S39: ${ }^{1} \mathrm{H}$ NMR spectrum of p, p^{\prime}-dimethoxyazobenzene $\mathbf{S 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S40: ${ }^{13} \mathrm{C}$ NMR spectrum of p, p^{\prime}-dimethoxyazobenzene $\mathbf{S 2}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S41: ${ }^{1} \mathrm{H}$ NMR spectrum of p-methoxy- \boldsymbol{p}^{\prime}-hydroxyazobenzene $\mathbf{S 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S42: ${ }^{13}$ C NMR spectrum of p-methoxy- p '-hydroxyazobenzene $\mathbf{S 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S43: Superimposition of the ${ }^{1} \mathrm{H}$ spectrum of a mixture of $\alpha \beta / \beta \beta-18 a$ and $p, p^{\prime}-$ dimethoxyazobenzene (top, green) with the spectrum of pure p, p^{\prime}-dimethoxyazobenzene (bottom, red).

Analytical proofs of the formation of N-dehydro- N-iodo- p hydroxyphenylhydrazoquinone S4

DHAB, upon treatment with NIS/TfOH gave compound S4, which after isolation was undergoing the following rearrangement:

The following data are thus concerning compound S5, however, the peak corresponding to $\mathbf{2 0}$ was observed in HRMS.
S4: ESI HRMS: m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{O}_{2}-\mathrm{H}^{+}$: $338.9636\left[\mathrm{M}-\mathrm{H}^{+}\right]$found: 338.9636
S5: ESI HRMS: m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}: 213.0659\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: 213.0663

Figure S44: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 5},\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S45: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S 5},\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S46: FTIR spectrum of S5.

Figure S47: FTIR spectrum of DHAB.

Literature references

1. (a) K. P. R. Kartha and H. J. Jennings, J. Carbohydrate Chemistry, 1990, 9, 777-781; (b) Carbohydrate Research, 2002, 337, 1247-1259 (c) R. Kakarla, R. G. Dulina, N. T. Hatzenbuhler, Y. W. Hui and M. J. Sofia, J. Org. Chem., 1996, 61, 8347-8349; (d) B. Yu and H. Tao, Tetrahedron Letters, 2001, 42, 2405-2407; (e) A. Müller and T. K. Lindhorst, Eur. J. Org. Chem., 2016, 16691672
2. J. P. Henschke, P.-Y. Wu, C.-W. Lin, S.-F. Chen, P.-C. Chiang and C.-N. Hsiao, J. Org. Chem., 2015, 80, 2295-2309.
3. J. S. Brimacombe and L. C. N. Tucker, Carbohydr. Res., 1975, 40, 387-390.
4. E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed., 2012,51, 91529155.
5. B. Clique, A. Ironmonger, B. Whittaker, J. Colley, J. Titchmarsh, P. Stockley and A. Nelson, Org. Biomol. Chem., 2005, 3, 2776-2785.
