Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material (ESI) for RSC Advances.

This journal is © the Owner Societies 2020

Acquiring effective CaO-based CO₂ sorbent and achieving selective methanation of CO₂

Chao Ping, Bao-Qi Feng, Yun-Lei Teng,* Han-Qing Chen, Si-Li Liu, Yun-Long Tai, Hao-Nan Liu and Bao-Xia Dong*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.

Fig. S1. Pore size distributions of (a) MgO/CaO/C; (b) MgO/2CaO/C; (c) MgO/4CaO/C; (d) MgO/8CaO/C sorbents.

Fig. S2. Carbon XPS spectrum of the solid products formed in the reaction of MgH₂/CaH₂ mixture with CO₂.

Fig. S3. Raman spectrum of amorphous carbon formed in the reaction of MgH₂/CaH₂ mixture with CO₂.

Calculation of the molar amount of amorphous carbon in the samples:

The following equations are used to calculate the mole amount of carbon in the MaO@xCaO@C (x = 1, 2, 4, and 8) samples formed in the reaction of MgH_2/CaH_2 mixture with CO₂:

$\mathbf{S} = 1356.1184 \bullet \mathbf{P}_{\mathbf{CH}_4} + 42101.053$	(S1)
$\mathbf{P}_{\mathrm{CH}_4}\mathbf{V} = \mathbf{n}_{\mathrm{CH}_4}\mathbf{R}\mathbf{T}$	(S2)
$\mathbf{n}_{\mathrm{C}} = \mathbf{n}_{\mathrm{CO}_2} - \mathbf{n}_{\mathrm{CH}_4}$	(S3)

In Eqs. (S1-S3), S is the peak area measured by GC. P_{CH_4} is the partial pressure of CH₄, V is the volume of the stainless steel milling vessel, n_{CH_4} is the mole amount of CH₄ produced, R is the ideal gas constant, T represents room temperature (298 K), n_C is the mole amount of C produced, n_{CO_2} is the mole amount of CO₂ used.