Supplementary Materials

Strain engineering and lattice vibration manipulation of atomically thin TaS₂ films

Xing Wu^{1,#,*}, Yongqing Cai^{2, #}, Jihong Bian^{3, #}, Guohui Su¹, Chen Luo¹, Yaodong Yang³, Gang Zhang^{2,*}

- ¹ Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
- ² Institute of High Performance Computing (IHPC), A*STAR, Singapore 138632, Singapore.
- ³ Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China.

Figure S1: Raman spectra of the suspended 2H-TaS₂ flakes under different laser beam power values from 1 mW, 1.6 mW, and back to 1 mW. After irradiated under high laser beam power, the TaS₂ flake remains untainted, indicating the laser power of 1 mW used in the experiment introduces no additional destruction of the samples.

Figure S2: Raman spectra of 2H-TaS₂ under different laser beam power values with and without the compressive strain. (a) Irradiation power ranging from 0.8 mW to 1.6 mW, the two-phonon peak is suppressed above 1 mW, as indicated by the arrows. (b) Raman spectra collected on the strained 2H-TaS₂ flake. The two-phonon peak remains even above 1 mW, which is different from the unstrained samples. The two-phonon mode is enhanced with the compressive strain.

Figure S3: Thickness dependence of the unstrained 2H-TaS₂ flake. There is no obvious change in the E_{2g}^{1} and A_{1g} as the thickness increases. In comparison to MoS₂, these two modes are highly thickness depended.

Figure 4. Raman characteristic of the suspended 2H-TaS₂ flake under different power of the laser beam:(a) without the compressive strain, and (b) with the compressive strain. Raman spectra of the two-phonon peak fade away with a high irradiation power of the laser beam. But the suspended 2H-TaS₂ flake impedes the phenomenon in (a). (c) Raman intensity of the two-phonon peak extracted from (a) and (b). (d) Raman shift of the (d) E_{2g}^{1} peak, and (e) as a function of different powers of the laser beam.