Electronic Supplementary Information

First Principle Study of Electrocatalytic Behavior of Olivine Phosphates with Mixed Alkali and Mixed Transition Metal Atoms

Arup Chakraborty,¹ Sooraj Kunnikuruvan,¹ David Zitoun,¹ Dan T. Major^{1,*}

¹ Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel

Table S1 Energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) configurations of Ni atoms in bulk LiNiPO₄.

Configuration	FM	AFM1	AFM2	AFM3
		(C-type)	(A-type)	(G-type)
Relative energy	0.000	-0.028	-0.006	-0.021
(eV)				

Figure S1 (010) surface slab model for $Li_{0.8}Na_{0.2}Ni_{0.7}Fe_{0.3}PO_4$ with a water molecule attached at Ni-site. Slab is confined along *c*-direction.

Table S2 Relative formation energy	(eV) of Na	doping	at Li	and Ni	sites	of LiNiPO.	4.
---	-----	---------	--------	-------	--------	-------	------------	----

Na at Li site	Na at Ni site
$(Li_{0.75}Na_{0.25}NiPO_4)$	$(LiNa_{0.25}Ni_{0.75}PO_4)$
0.000	1.039

Ato	Bare	Bare	Water	Water	Water	Water
mic	surface	surface	attached to	attached to	attached to	attached to
site	of	of	the Ni-site	the Ni-site	the Fe-site	the Fe-site
	Li _{0.8} Na _{0.2} N	Li _{0.6} Na _{0.2} N	of	of	of	of
	$i_{0.7}Fe_{0.3}PO_4$	$i_{0.7}Fe_{0.3}PO_4$	Li _{0.8} Na _{0.2} N	Li _{0.6} Na _{0.2} N	Li _{0.8} Na _{0.2} N	Li _{0.6} Na _{0.2} N
			$i_{0.7}Fe_{0.3}PO_4$	$i_{0.7}Fe_{0.3}PO_4$	$i_{0.7}Fe_{0.3}PO_4$	$i_{0.7}Fe_{0.3}PO_4$
Fe3	1.375	1.361	1.339	1.384	1.412	1.440
(at						
the						
top						
)						
Fe1	1.715	1.690	1.724	1.703	1.716	1.733
Ni5	1.203	1.306	1.291	1.315	1.188	1.276
(at						
the						
top						
)						
Ni3	1.296	1.282	1.290	1.291	1.295	1.293
Fe2	1.427	1.834	1.427	1.832	1.424	1.421
P5	2.349	3.617	2.770	3.596	2.330	2.921
P10	2.761	2.481	2.359	2.440	2.715	3.640
02	0.867	0.903	0.867	0.909	0.685	0.853
5						
03	0.620	0.702	0.645	0.664	0.627	0.624
8						

Table S3 Bader charges for selected atoms in $Li_{0.8}Na_{0.2}Ni_{0.7}Fe_{0.3}PO_4$ without and with Livacancies. Atom numbers in this table are the same as in Figure S1.

Table S4 Bader charges for selected atoms in $LiNi_{0.7}Fe_{0.3}PO_4$ without and with Livacancies. Atom numbers in this table are the same as in Figure S1.

Ato	Bare	Bare	Water	Water	Water	Water
mic	surface	surface of	attached	attached to	attached	attached to
site	of	Li _{0.8} Ni _{0.7} Fe	to the Ni-	the Ni-site	to the Fe-	the Fe-site
	LiNi _{0.7} Fe _{0.}	_{0.3} PO ₄	site of	of	site of	of
	$_3PO_4$		LiNi _{0.7} Fe _{0.}	Li _{0.8} Ni _{0.7} Fe	LiNi _{0.7} Fe _{0.}	Li _{0.8} Ni _{0.7} Fe
			$_{3}PO_{4}$	_{0.3} PO ₄	$_3PO_4$	_{0.3} PO ₄
Fe3	1.571	1.356	1.333	1.346	1.406	1.439
(at						
the						
top)						
Fe1	1.390	1.682	1.705	1.689	1.709	1.598

Ni5	1.164	1.315	1.284	1.317	1.170	1.207
(at						
the						
top)						
Ni3	1.292	1.29	1.292	1.29	1.291	1.285
Fe2	1.429	1.829	1.427	1.832	1.427	1.837
P5	2.440	3.628	2.764	3.605	2.349	2.867
P10	2.765	2.511	2.342	2.459	2.761	2.886
025	0.725	0.907	0.832	0.885	0.817	0.790
038	0.653	0.665	0.653	0.656	0.657	0.708

Table S5. Comparison of adsorption energy and overpotential for the olivine phosphates with mixed alkali and TM atoms.

Theoretical	Experimental	Calculated	Overpotential (V)
composition	composition	$\Delta E_{ads} (eV)$	
LiNi _{0.8} Co _{0.2} PO ₄	LiNi _{0.8} Co _{0.2} PO ₄	-0.123	0.54
			(1 M KOH)
			[Ref. ¹]
LiNi _{0.9} Fe _{0.1} PO ₄	LiNi _{0.9} Fe _{0.1} PO ₄	-0.767	0.43
			(1 M KOH)
			[Ref. ¹]
LiNi _{0.7} Fe _{0.3} PO ₄	LiNi _{0.75} Fe _{0.25} PO ₄	- 0.817	0.295
			(1 M KOH)
			[Ref. ²]
Li _{0.6} Na _{0.2} Ni _{0.7} Fe _{0.3} PO ₄	Li _{0.6} Na _{0.2} Ni _{0.7} Fe _{0.1} PO ₄	-1.309	0.280
			(6 M KOH)
			[Ref. ¹]

References

1.	Y. Gershinsky, M. Zysler, V. Shokhen, Y. Stone and D. Zitoun, ACS Catal., 2019, 9,
	8355-8363.

2. S. Ma, Q. Zhu, L. Chen, W. Wang and D. Chen, J. Mater. Chem. A, 2016, 4, 8149-8154.