Synthesis of Heteroatom-Containing Pyrrolidine Derivatives Based on $\mathrm{Ti}(\mathrm{O}-i \mathrm{Pr})_{4}$ and EtMgBr -Catalyzed Carbocyclization of Allylpropargyl Amines with $\mathrm{Et}_{2} \mathrm{Zn}$
 *Rita N. Kadikova, Ilfir R. Ramazanov, Azat M. Gabdullin, Oleg S. Mozgovoj, Usein M. Dzhemilev
 Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation

Tel./fax: +7-347-284-2750

E-mail address: kadikritan@gmail.com

Supporting information

Reagents and methods

The reagents were obtained from Sigma-Aldrich or Acros. Hexane and dichloromethane were distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. Diethyl ether, tetrahydrofuran, 1,4-dioxane, toluene, benzene and anisole were dried over sodium. Dried 1,2-dimethoxyethane was obtained from Sigma-Aldrich. 2-Alkynylamines 1a-i and 6,8 were prepared by aminomethylation of terminal alkynes with aqueous formaldehyde and secondary N-aryl-substituted allyl amines under CuBr catalysis [1]. Nitrogen-containing 1,6-enynes with terminal propargyl and allyl groups were prepared by alkylation of N -aryl-substituted allyl amines with propargyl bromide under NaH [2]. Allyl substituted but-2-yne-1,4-diamines 10 were prepared by aminomethylation of nitrogen-containing 1,6-enynes (with terminal propargyl and allyl groups) by bisamine [3]. Acetylenic ethers $\mathbf{1 3}$ were prepared by aminomethylation of ethers of acetylenic alcohols with aqueous formaldehyde and secondary N-aryl- substituted allyl amines under CuBr catalysis [1]. Nuclear magnetic resonance spectroscopy was performed on a Brucker Avance 500. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra at 100 MHz in CDCl_{3}. The chemical shifts are reported in ppm relative to tetramethylsilane (TMS) as the internal
standard. The numbering of atoms in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of the compounds 3a-g, 3i, $\mathbf{4 h}, \mathbf{f} \mathbf{5 a}$, 5h, 7, 9, 11a-c, 12a, 14 is shown in Figures 1,2,3. Elemental analysis was performed using a Carlo-Erba CHN 1106 elemental analyser. Mass spectra were obtained on a Finnigan 4021 instrument. The yields were calculated from the isolated amount of pyrrolidine and pyrrolidone derivatives obtained from starting nitrogen-containing 1,6-enynes.

Preparation of 3-methyl-4-methylenepyrrolidines $\mathbf{3 a - g}, \mathbf{3 i}, 4 \mathrm{~h}, \mathrm{f}$ and $\mathbf{5 a}, \mathrm{h}$ via $\mathbf{~ T i}-\mathrm{Mg}-$

 catalyzed carbozincation of N-allyl substituted propargylamines with $\mathbf{E t}_{2} \mathbf{Z n}$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

3a

3b

3c

4h

4f

Figure 1 The numbering of atoms in the ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the compounds 3a$\mathbf{g}, \mathbf{3 i}, \mathbf{4 h}, \mathrm{f}$ and 5a,h.
(Z)-1-(4-methoxybenzyl)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidine; Typical Procedure.

To a solution of N-(4-methoxybenzyl)- N-(3-(trimethylsilyl)prop-2-yn-1-yl)prop-2-en-1amine ($574 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexanes, $5 \mathrm{~mL}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(0.5 \mathrm{M}$ in hexanes, $0.6 \mathrm{~mL}, 0.3 \mathrm{mmol})$. Ethylmagnesiurn bromide (2.5 M in $\mathrm{Et}_{2} \mathrm{O}, 0.16 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was then added and the reaction mixture rapidly turned black. After 18 h at $23{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, and $25 \mathrm{wt} \% \mathrm{KOH}$ solution (3 mL) was added dropwise while the reaction flask was cooled in an ice bath. The aqueous layer was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over anhydrous CaCl_{2}. The reaction mixture was filtered through a filter paper and concentrated in vacuo to give crude product as a yellow oil. Evaporation of solvent and purification of the residue by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) gave 3a $(509 \mathrm{mg}, 88 \%)$ as colorless oil. $\mathrm{R}_{\mathrm{f}} 0.70$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(14,15,16) \mathrm{H}_{3}\right), 1.09(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 1.99\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.68(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 2.98$ $\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.03\left(\mathrm{dt}, J=14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(4) \mathrm{H}_{2}\right), 3.56(\mathrm{~d}, J$ $\left.=12 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.63\left(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{3}\right), 5.31(\mathrm{q}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H}), 7.28$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.40(\mathrm{C}(14,15,16)), 17.34(\mathrm{C}(6)), 40.28$ ($\mathrm{C}(2)$), 55.22 ($\mathrm{C}(17)), 59.32(\mathrm{C}(4)), 60.12(\mathrm{C}(7)), 61.15(\mathrm{C}(1)), 113.63(\mathrm{C}(10,12))$, 116,74 (C(5)), $130.04(\mathrm{C}(9,13)), 131.66(\mathrm{C}(8)), 158.68(\mathrm{C}(11)), 162.68$ (C(3)).

MS (EI): m/z, \% = 289 (1) [$\left.\mathrm{M}^{+}\right], 287$ (11), 214 (11), 166 (8), 121 (100).
Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NOSi},(\%): \mathrm{C}, 70.53 ; \mathrm{H}, 9.40$; N, 4.84. Found, \%: C, 70.76; H, 9.57; N, 5.07.

(Z)-3-benzylidene-1-(4-chlorobenzyl)-4-methylpyrrolidine (3b)

Using the procedure described above N-(4-chlorobenzyl)- N-(3-phenylprop-2-yn-1-yl)prop-2-en-1-amine ($592 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford 3b (471 $\mathrm{mg}, 79 \%$) as colorless oil. $\mathrm{R}_{\mathrm{f}} 0.59$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30\left(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.19(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A})$, $\left.\mathrm{C}(1) \mathrm{H}_{2}\right), 2.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 3.05\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.40(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A})$, $\left.\mathrm{C}(4) \mathrm{H}_{2}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{2}\right), 3.82\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}(5) \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(16) \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(14,18) \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$, $7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(15,17) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (500MHz, CDCl_{3}): $\delta=18.10(\mathrm{C}(6)), 39.20(\mathrm{C}(2)), 58.43(\mathrm{C}(4))$, 59.93 ($\mathrm{C}(7)$), $61.23(\mathrm{C}(1)), 120.69(\mathrm{C}(5)), 126.27(\mathrm{C}(16)), 127.97(\mathrm{C}(14,18))$,
$128.45(\mathrm{C}(15,17))$, $128.54(\mathrm{C}(10,12))$, $130.12(\mathrm{C}(9,13))$, $132.79(\mathrm{C}(11)), 137.40$ (C(8)), $138.05(\mathrm{C}(19)), 146.98(\mathrm{C}(3))$.

Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}$, (\%): C, 76.62; H, 6.77; N, 4.70. Found, \%: C, 76.45; H, 6.91; N, 4.75.

(Z)-3-benzylidene-4-methyl-1-(4-methylbenzyl)pyrrolidine (3c)

Using the procedure described above N-(4-methylbenzyl)- N-(3-phenylprop-2-yn-1-yl)prop-2-en-1-amine ($380 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8)$ to afford $\mathbf{3 c}(382$ $\mathrm{mg}, 69 \%$) as colorless oil. $\mathrm{R}_{\mathrm{f}} 0.61$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.23(\mathrm{t}, J=8 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{3}\right), 3.02(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{HC}(2) \mathrm{H}), 3.11(\mathrm{t}, J=8$ $\left.\mathrm{Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.46\left(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(7) \mathrm{H}), 3.92$ (d, $\left.J=15 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 6.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10$, 12)H), 7.27 (m, 1H, C(16)H), 7.30 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(14,18) \mathrm{H}), 7.37$ (d, $J=8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H}), 7.42(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(15,17) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.13(\mathrm{C}(6)), 21.23(\mathrm{C}(20)), 39.31(\mathrm{C}(2))$, $58.59(\mathrm{C}(4)), 60.46(\mathrm{C}(7)), 61.32(\mathrm{C}(1))$, 120.45 (C(5)), 126.14 (C(16)), 128.00 $(\mathrm{C}(14,18)), 128.41(\mathrm{C}(15,17)), 128.75(\mathrm{C}(9,13)), 129.09(\mathrm{C}(10,11)), 136.00$ (C(8)), 136.58 (C(11)), 138.23 (C(19)), 147.59 (C(3)).
MS ($\mathrm{m} / \mathrm{z}, \%$): 277 (41) [M] ${ }^{+}, 262$ (19), 172 (10), 129 (13), 105 (100).
Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}$, (\%): C, 86.59; H, 8.36; N, 5.05. Found, \%: C, 86.62; H, 8.43; N, 4.85 .

(Z)-3-methyl-1-(4-methylbenzyl)-4-pentylidenepyrrolidine (3d)

Using the procedure described above N-allyl- N-(4-methylbenzyl)hept-2-yn-1-amine (510 $\mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford $\mathbf{3 d}(494 \mathrm{mg}, 73 \%) . \mathrm{R}_{\mathrm{f}} 0.68$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}\right), 1.08(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(6) \mathrm{H}_{3}\right), 1.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{2}\right), 1.92(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(15) \mathrm{H}_{2}\right), 2.05\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{3}\right), 2.69(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(2) \mathrm{H}), 2.98\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.01\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right)$, $3.50\left(\mathrm{~d}, J=14 \mathrm{H}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.62\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.66(\mathrm{~d}, J=$ $\left.13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 5.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$, $7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.03(\mathrm{C}(17)), 17.59(\mathrm{C}(6)), 21.12(\mathrm{C}(18))$, $22.35(\mathrm{C}(16)), 29.14(\mathrm{C}(15)), 31.75(\mathrm{C}(14)), 37.17$ (C(2)), $56.59(\mathrm{C}(4)), 60.43$ (C(7)), 62.07 ($\mathrm{C}(1)$), 120.05 (C(5)), 136.61 (C(8)), 128.87 (C(9, 13)), 128.96 (C(10, 12)), 143.76 (C(3)).

MS ($m / z, \%$): 257 (14) [M] $]^{+} 200(25), 152(10), 105$ (100).

Anal.calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}$, (\%): C, 83.99; H, 10.57; N, 5.44. Found, \%: C, 84.28; H, 10.73; N, 5.30.

(Z)-1-(furan-2-ylmethyl)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidine (3e)

Using the procedure described above N -(furan-2-ylmethyl)- N -(3-(trimethylsilyl)prop-2-yn-1-yl)prop-2-en-1-amine ($494 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford 3e ($403 \mathrm{mg}, 81 \%$). $\mathrm{R}_{\mathrm{f}} 0.74$.
${ }^{1} \mathrm{H}$ NMR (500MHz, CDCl_{3}): $\delta=0.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(12,13,14) \mathrm{H}_{3}\right), 1.09(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.05\left(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.70(\mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}), 3.04(\mathrm{~m}$, $\left.1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.06\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.59(\mathrm{dd}, J=14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B})$, $\left.\mathrm{C}(4) \mathrm{H}_{2}\right), 3.65\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.68\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right)$, $5.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 6.22(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 6.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.39$ $(\mathrm{dd}, J=2 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(11) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.45(\mathrm{C}(12,13,14)), 17.17(\mathrm{C}(6)), 40.25$ ($\mathrm{C}(2)$), 52.19 ($\mathrm{C}(7)$), 58.96 ($\mathrm{C}(4)), 107.86$ ($\mathrm{C}(9))$, 110.06 ($\mathrm{C}(10)), 116.84(\mathrm{C}(5))$, 141.97 (C(11)), 152.45 (C(8)), 162.29 (C(3)).

MS ($\mathrm{m} / \mathrm{z}, \%$): 249 (16) $[\mathrm{M}]^{+}, 176$ (76), 152 (9), 81 (100).
Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NOSi}$, (\%): C, 67.42; H, 9.29; N, 5.62. Found, \%: C, 67.07; H, 9.14; N, 5.39.

(Z)-3-methyl-1-(thiophen-2-ylmethyl)-4-((trimethylsilyl)methylene)pyrrolidine (3f)

Using the procedure described above N-(thiophen-2-ylmethyl)-N-(3-(trimethylsilyl)prop-$2-y n-1-y l)$ prop-2-en-1-amine ($526 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford $\mathbf{3 f}$ ($403 \mathrm{mg}, 76 \%$). $\mathrm{R}_{\mathrm{f}} 0.80$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(12,13,14) \mathrm{H}_{3}\right), 1.10(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.07\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 3.04(\mathrm{t}, J=8$ $\left.\mathrm{Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.09\left(\mathrm{dt}, J=14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.61(\mathrm{dd}, J=$ $\left.14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.84\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.88(\mathrm{~d}, J=$ $\left.14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 5.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(11) \mathrm{H}), 6.98(\mathrm{t}, J=3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.25$ (dd, $J=5 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.42(\mathrm{C}(12,13,14)), 17.34(\mathrm{C}(6)), 40.35$ ($\mathrm{C}(2)$), 54.69 ($\mathrm{C}(7)$), $59.06(\mathrm{C}(4))$, $61.04(\mathrm{C}(1)), 116.89$ ($\mathrm{C}(5))$, 124.79 ($\mathrm{C}(9))$, $125.50(\mathrm{C}(11)), 126.41(\mathrm{C}(10)), 142.10(\mathrm{C}(8)), 162.44$ (C(3)).

MS ($\mathrm{m} / \mathrm{z}, \%$): 265 (4) [M] ${ }^{+}, 192$ (31), 97 (100), 73 (20).
Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NSSi}$, (\%): C, 63.34; H, 8.73; N, 5.28. Found, \%: C, 63.39; H, 8.64; N, 5.11.

(Z)-1-(4-chlorobenzyl)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidine (3g)

Using the procedure described above N-(4-chlorobenzyl)- N-(3-(trimethylsilyl)prop-2-yn1 -yl)prop-2-en-1-amine ($584 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford $\mathbf{3 g}$ ($500 \mathrm{mg}, 85 \%$). $\mathrm{R}_{\mathrm{f}} 0.68$.
${ }^{1} \mathrm{H}$ NMR (500MHz, CDCl_{3}): $\delta=0.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(14,15,16) \mathrm{H}_{3}\right), 1.09(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.01\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.67(\mathrm{p}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 2.95$ $\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.03\left(\mathrm{dt}, J=14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.52$ (dd, $\left.J=14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.58\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.63$ $\left(\mathrm{d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 5.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.30(\mathrm{~d}, J=3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}(9$, $10,12,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.3(\mathrm{C}(14,15,16)), 17.45(\mathrm{C}(6)), 40.36$ $(\mathrm{C}(2)), 59.32(\mathrm{C}(4)), 60.01(\mathrm{C}(7)), 61.26(\mathrm{C}(1)), 116.96(\mathrm{C}(5)), 128.39(\mathrm{C}(10,12))$, $130.06(\mathrm{C}(9,13)), 132.63(\mathrm{C}(11)), 137.46(\mathrm{C}(8)), 162.45(\mathrm{C}(3))$.

MS ($\mathrm{m} / \mathrm{z}, \%$): 294 (4) [M] ${ }^{+}, 293$ (9), 220 (73), 168 (13), 125 (100), 89 (13), 73 (29).
Anal.calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{ClNSi}$, (\%): C, 65.39; H, 8.23; N, 4.77. Found, \%: C, 65.43; H, 8.27; N, 5.01.

(Z)-3-(methyl-d)-1-(4-methylbenzyl)-4-((trimethylsilyl)methylene-d)pyrrolidine (4h)

Using the procedure described above N-(4-methylbenzyl)- N-(3-(trimethylsilyl)prop-2-yn1 -yl)prop-2-en-1-amine ($542 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{D}_{2} \mathrm{O}$ (instead of $\mathrm{H}_{2} \mathrm{O}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=$ $1: 1: 8)$ to afford $4 h(226 \mathrm{mg}, 82 \%) . \mathrm{R}_{\mathrm{f}} 0.63$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(14,15,16) \mathrm{H}_{3}\right), 1.09(\mathrm{t}, J=8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}(6) \mathrm{DH}_{2}\right), 2.01\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}\right), 2.68(\mathrm{p}, J$ $=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 2.99\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.06(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(4) \mathrm{H}_{2}\right), 3.58\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.67\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right)$, $7.17(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H}), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.41(\mathrm{C}(14,15,16)), 17.07(\mathrm{t}, J=20 \mathrm{~Hz}$, $\mathrm{C}(6))$, 21.14 ($\mathrm{C}(17)$), 40.22 ($\mathrm{C}(2)$), 59.39 ($\mathrm{C}(4)$), 60.49 ($\mathrm{C}(7)), 61.17$ ($\mathrm{C}(1))$, 116.70 ($\mathrm{C}(5)$), 128.82 ($\mathrm{C}(9,13)$), 128.96 ($\mathrm{C}(10,12)$), 135.67 (C(8)), 136.53 (C(11)), 162.69 (C(3)).

MS ($\mathrm{m} / \mathrm{z}, \%$): 276 (<1) [M] ${ }^{+}, 275$ (<1), 258 (6), 200 (41), 105 (100), 73 (15).
Anal.calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{D}_{2} \mathrm{NSi}$, (\%): C, 74.11; N, 5.08. Found, \%: C, 74.53; N, 5.30.

(Z)-3-(methyl-d)-1-(thiophen-2-ylmethyl)-4-((trimethylsilyl)methylene-d)pyrrolidine (4f)

Using the procedure described above N-(thiophen-2-ylmethyl)- N -(3-(trimethylsilyl)prop-2-yn-1-yl)prop-2-en-1-amine ($526 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{D}_{2} \mathrm{O}$ gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford $\mathbf{4 f}(400 \mathrm{mg}, 71 \%) . \mathrm{R}_{\mathrm{f}} 0.80$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(12,13,14) \mathrm{H}_{3}\right), 1.08(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}(6) \mathrm{DH}_{2}\right), 2.06\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 3.04(\mathrm{t}, J=$ $\left.8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.09\left(\mathrm{dt}, J=14 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.61(\mathrm{~d}, J=$ $\left.14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.84\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.88(\mathrm{~d}, J=14 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(11) \mathrm{H}), 6.97(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.25(\mathrm{~d}, J=$ $5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.44(\mathrm{C}(12,13,14)), 17.03(\mathrm{t}, J=19 \mathrm{~Hz}$, $\mathrm{C}(6)), 40.23(\mathrm{C}(2)), 54.68(\mathrm{C}(7)), 59.01(\mathrm{C}(4)), 61.00(\mathrm{C}(1)), 116.51(\mathrm{t}, \mathrm{C}(5))$, 124.79 ($\mathrm{C}(9)$), 125.53 ($\mathrm{C}(11))$, 126.41 ($\mathrm{C}(10)), 142.07(\mathrm{C}(8)), 162.37(\mathrm{C}(3))$.

MS ($\mathrm{m} / \mathrm{z}, \%$): 268 (2) [M] ${ }^{+}, 267$ (7), 252 (6), 194 (62), 97 (100), 73 (40).
Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{D}_{2} \mathrm{NSSi}$, (\%): C, 62.86; N, 5.24. Found, \%: C, 62.54; N, 5.20.

(Z)-3-methyl-1-(4-methylbenzyl)-4-(4-methylbenzylidene)pyrrolidine (3i)

Using the procedure described above N-(4-methylbenzyl)- N-(3-(p-tolyl)prop-2-yn-1-yl)prop-2-en-1-amine ($578 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}$ (instead of $\mathrm{D}_{2} \mathrm{O}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=$ $1: 1: 8)$ to afford $\mathbf{3 i}(265 \mathrm{mg}, 91 \%) . \mathrm{R}_{\mathrm{f}} 0.54$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.17(\mathrm{t}, J=8 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{3}\right), 2.96(\mathrm{q}, J=7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 3.07\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.39\left(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right)$, $3.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{2}\right), 3.86\left(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 6.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.17$ $(\mathrm{d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(14,18) \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(15,17) \mathrm{H}), 7.20(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(10,12) \mathrm{H}), 7.32(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.04(\mathrm{C}(6)), 21.17(\mathrm{C}(20,21)), 39.17$ ($\mathrm{C}(2)$), $58.54(\mathrm{C}(4)), 60.45(\mathrm{C}(7)), 61.33(\mathrm{C}(1)), 120.19(\mathrm{C}(5)), 127.86(\mathrm{C}(14,18))$, 128,72 ($\mathrm{C}(9,13)), 129.03$ ($\mathrm{C}(15,17)), 129.07(\mathrm{C}(10,12)), 135.38(\mathrm{C}(19)), 135.71$ (C(16)), 136.54 (C(11)), 137.97 (C(8)).

MS ($\mathrm{m} / \mathrm{z}, \%$ \%): 291 (77) [M] ${ }^{+}, 276$ (30), 186 (11), 143 (15), 105 (100).
Anal.calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}$, (\%): C, 86.55; H, 8.65; N, 4.81. Found, \%: C, 86.37; H, 8.60; N, 4.79 .

(E)-3-(iodo(trimethylsilyl)methylene)-4-(iodomethyl)-1-(4-methoxybenzyl)pyrrolidin-2-one (5a); Typical Procedure.

To a solution of N-(4-methoxybenzyl)- N-(3-(trimethylsilyl)prop-2-yn-1-yl)prop-2-en-1amine ($754 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexanes, $5 \mathrm{~mL}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(0.5 \mathrm{M}$ in hexanes, $0.6 \mathrm{~mL}, 0.3 \mathrm{mmol})$. Ethylmagnesiurn bromide $\left(2.5 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.16 \mathrm{~mL}, 0.4 \mathrm{mmol}\right)$ was then added and the reaction mixture rapidly turned black. After 18 h at $23^{\circ} \mathrm{C}$, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of $\mathrm{I}_{2}(1575 \mathrm{mg}, 12,5 \mathrm{mmol})$ in THF $(12,5 \mathrm{~mL})$ was added via cannula. The reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$, and stirred overnight. The mixture was then
partitioned between 25% aqueous KOH and ether. The organic layer was washed with water and aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, drying over MgSO_{4}. Evaporation of solvent and purification of the residue by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1$: $1: 8)$ to afford 5 a ($617 \mathrm{mg}, 57 \%$). $\mathrm{R}_{\mathrm{f}} 0.85$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(14,15,16) \mathrm{H}_{3}\right), 3.17(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A})$, $\left.\mathrm{C}(6) \mathrm{IH}_{2}\right), 3.18\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 3.45\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right)$, $3.55\left(\mathrm{dd}, J=10 \mathrm{~Hz}, J=3 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(6) \mathrm{IH}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}\right), 4.27(\mathrm{~d}, J=$ $\left.14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 4.62\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(10,12) \mathrm{H}, 7.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.21(\mathrm{C}(14,15,16)), 7.77(\mathrm{C}(6)), 47.03$ ($\mathrm{C}(7)$), 48.98 ($\mathrm{C}(2)$), 49.22 ($\mathrm{C}(1)$), 55.31($\mathrm{C}(17)), 114.20$ ($\mathrm{C}(10,12)$), 127.77 ($\mathrm{C}(8)$), 129.72 ($((9,13)), 153.11(\mathrm{C}(3)), 159.31(\mathrm{C}(11)), 162.60(\mathrm{C}(4))$.
Anal.calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{I}_{2} \mathrm{NO}_{2} \mathrm{Si}$, (\%): C, 36.77; H, 4.18; N, 2.52. Found, \%: C, 36.21; H, 4.42; N, 2.39.

(E)-3-(iodo(trimethylsilyl)methylene)-4-(iodomethyl)-1-(4-methylbenzyl)pyrrolidin-2-one (5h)

Using the procedure described above N-(4-methylbenzyl)- N-(3-(trimethylsilyl)prop-2-yn1 -yl)prop-2-en-1-amine ($542 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by flash chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford $\mathbf{5 h}$ (641 $\mathrm{mg}, 61$ \%). $\mathrm{R}_{\mathrm{f}} 0.87$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(14,15,16) \mathrm{H}_{3}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{3}\right), 3.17\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(6) \mathrm{IH}_{2}\right), 3.19\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.27(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}(2) \mathrm{H}), 3.46\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.56\left(\mathrm{dd}, J=10 \mathrm{~Hz}, J=3 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(6) \mathrm{IH}_{2}\right)$, $4.28\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 4.66\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 7.17(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{C}(9,10,12,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.22(\mathrm{C}(14,15,16)), 7.78(\mathrm{C}(6)), 21.17$ ($\mathrm{C}(17)$), 47.37 ($\mathrm{C}(7)$), 49.09 ($\mathrm{C}(2)$), $49.29(\mathrm{C}(1)), 125.63(\mathrm{C}(5)), 128.36(\mathrm{C}(9,13))$, 129.52 ($\mathrm{C}(10,12)), 132.63(\mathrm{C}(8)), 137.64(\mathrm{C}(11)), 153.08(\mathrm{C}(3)), 162.66(\mathrm{C}(4))$. MS ($\mathrm{m} / \mathrm{z}, \%$): 539 (4) [M] ${ }^{+}, 420$ (8), 396 (8), 292 (8), 105 (100), 79 (15).
Anal.calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{I}_{2} \mathrm{NOSi}$, (\%): C, 37.86; H, 4.30; N, 2.60. Found, \%: C, 38.08; H, 4.27; N, 2.44.

Preparation of bis-3-methyl-4-methylenepyrrolidines 7 and 9 via Ti-Mg-catalyzed carbozincation of bis- N-allyl substituted propargylamines with $\mathbf{E t}_{2} \mathbf{Z n}$ in $\mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$.

Figure 2 The numbering of atoms in the ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the compounds 7 and 9.

1,4-bis(((Z)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidin-1-yl)methyl)benzene

 (7); Typical Procedure.To a solution of $N, N^{\prime}-(1,4-$ phenylenebis(methylene))bis(N-(3-(trimethylsilyl)prop-2-yn1 -yl)prop-2-en-1-amine) ($874 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{Zn}$ (1 M in hexanes, $5 \mathrm{~mL}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{O}-i \mathrm{Pr})_{4}(0.5 \mathrm{M}$ in hexanes, $1.2 \mathrm{~mL}, 0.6 \mathrm{mmol})$. Ethylmagnesiurn bromide (2.5 M in $\mathrm{Et}_{2} \mathrm{O}, 0.32 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was then added and the reaction mixture rapidly turned black. After 18 h at $23{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, and $25 \mathrm{wt} \% \mathrm{KOH}$ solution (3 mL) was added dropwise while the reaction flask was cooled in an ice bath. The aqueous layer was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over anhydrous CaCl_{2}. The reaction mixture was filtered through a filter paper and concentrated in vacuo to give crude product as a yellow oil. Evaporation of solvent and purification of the residue by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8)$ gave $7(776 \mathrm{mg}, 88 \%)$ as colorless oil. $\mathrm{R}_{\mathrm{f}} 0.52$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{C}\left(11,12,13,11\right.$ ', 12', 13 ') H_{3}), 1.09 $\left(\mathrm{d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}\left(6,6^{\prime}\right) \mathrm{H}_{3}\right), 2.01\left(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{A}), \mathrm{C}\left(1,1^{\prime}\right) \mathrm{H}_{2}\right), 2.67(\mathrm{q}, J=7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}\left(2,2^{\prime}\right) \mathrm{H}\right), 2.98$ (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{B}), \mathrm{C}\left(1,1^{\prime}\right) \mathrm{H}_{2}$), 3.03 (d, $J=14 \mathrm{~Hz}$, $\left.2 \mathrm{H}(\mathrm{A}), \mathrm{C}\left(4,4^{\prime}\right) \mathrm{H}_{2}\right), 3.55\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{B}), \mathrm{C}\left(4,4^{\prime}\right) \mathrm{H}_{2}\right), 3.60(\mathrm{~d}, J=13 \mathrm{~Hz}$, $\left.2 \mathrm{H}(\mathrm{A}), \mathrm{C}\left(7,7^{\prime}\right) \mathrm{H}_{2}\right), 3.66\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{B}), \mathrm{C}\left(7,7^{\prime}\right) \mathrm{H}_{2}\right), 5.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(5$, $\left.\left.5^{\prime}\right) \mathrm{H}\right), 7.31$ (s, 4H, C(9, 10, 9', 10’)H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.43\left(\mathrm{C}\left(11,12,13,11^{\prime}, 12^{\prime}, 13^{\prime}\right)\right), 17.36$ ($\left.\mathrm{C}\left(6,6^{\prime}\right)\right), 40.32\left(2,2^{\prime}\right), 59.42\left(\mathrm{C}\left(4,4^{\prime}\right)\right), 60.55\left(\mathrm{C}\left(7,7^{\prime}\right)\right), 61.31\left(\mathrm{C}\left(1,1^{\prime}\right)\right), 116.69$ (C(5, 5’)), 128.78 (C(9, 10, 9’, 10’)), $137.65\left(C\left(8,8^{\prime}\right)\right), 162.77\left(C\left(3,3^{\prime}\right)\right)$.

MS (EI): m/z, \% = 441 (16) [M $\left.{ }^{+}\right], 440$ (39), 367 (100), 272 (66), 207 (44), 168 (34), 104 (85), 73 (67), 44 (47).

Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{Si}_{2}$, (\%): C, 70.84; H, 10.06; N, 6.35. Found, \%: C, 71.07; H, 9.95; N, 6.39.
(4Z,4'Z)-4,4'-(octane-2,7-diylidene)bis(3-ethyl-1-(4-methylbenzyl)pyrrolidine) (9)
Using the procedure described above N^{1}, N^{10}-diallyl- N^{1}, N^{10}-bis(4-methylbenzyl)deca-2,8-diyne-1,10-diamine ($906 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by flash chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford 9 (872 $\mathrm{mg}, 85 \%) . \mathrm{R}_{\mathrm{f}} 0.80$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.10\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}\left(6,6{ }^{\prime}\right) \mathrm{H}_{3}\right), 1.36(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{C}\left(16,16^{\prime}\right) \mathrm{H}_{2}\right), 1.92\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(15,15^{\prime}\right) \mathrm{H}_{2}\right), 2.04(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{A}), \mathrm{C}(4$, $\left.4^{\prime}\right) \mathrm{H}_{2}$), $2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(14,14^{\prime}\right), 2.70(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(3,3\right.$ ') H$), 2.97(\mathrm{~d}, J=14$ $\left.\mathrm{Hz}, 2 \mathrm{H}(\mathrm{A}), \mathrm{C}\left(1,1^{\prime}\right) \mathrm{H}_{2}\right), 3.00\left(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{B}), \mathrm{C}\left(4,4^{\prime}\right) \mathrm{H}_{2}\right), 3.48(\mathrm{~d}, J=14 \mathrm{~Hz}$, $\left.2 \mathrm{H}(\mathrm{B}), \mathrm{C}\left(1,1^{\prime}\right) \mathrm{H}_{2}\right), 3.61\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{A}), \mathrm{C}\left(7,7{ }^{\prime}\right) \mathrm{H}_{2}\right), 3.65(\mathrm{~d}, J=13 \mathrm{~Hz}$, $\left.2 \mathrm{H}(\mathrm{B}), \mathrm{C}\left(7,7^{\prime}\right) \mathrm{H}_{2}\right), 5.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}\left(5,5^{\prime}\right) \mathrm{H}\right), 7.17(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}(10,12$, 10',12')H), 7.28 (d, $\left.J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(9,13,9^{\prime}, 13^{\prime}\right) \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.75\left(\mathrm{C}\left(6,6^{\prime}\right)\right), 21.15\left(\mathrm{C}\left(14,14^{\prime}\right)\right), 29.24$ $\left(\mathrm{C}\left(16,16^{\prime}\right)\right), 29.37\left(\mathrm{C}\left(15,15^{\prime}\right)\right), 37.33\left(\mathrm{C}\left(3,3^{\prime}\right)\right), 56.82\left(\mathrm{C}\left(1,1^{\prime}\right)\right), 60.61\left(\mathrm{C}\left(7,7^{\prime}\right)\right)$, 62.28 ($\left.\left(4,4^{\prime}\right)\right), 119.69\left(C\left(5,5^{\prime}\right)\right), 128,77\left(\mathrm{C}\left(9,13,9^{\prime}, 13 ’\right)\right), 128.94(\mathrm{C}(10,12$, $\left.\left.10^{\prime}, 12^{\prime}\right)\right), 136.07\left(\mathrm{C}\left(8,8^{\prime}\right)\right), 136.46\left(\mathrm{C}\left(11,11^{\prime}\right)\right), 144.09\left(\mathrm{C}\left(2,2^{\prime}\right)\right)$.
MS ($\mathrm{m} / \mathrm{z}, \%$): 457 (3) [M] ${ }^{+}, 456$ (3), 351 (1), 200 (10), 105 (100), 79 (6).
Anal.calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2}$, (\%): C, 84.16; H, 9.71; N, 6.13. Found, \%: C, 83.89; H, 9.50; N, 6.17.

Preparation of 3-methyl-4-methylenepyrrolidines 11a-c, 12a and 14 via $\mathrm{Ti}-\mathrm{Mg}$ catalyzed carbozincation of allyl substituted but-2-yne-1,4-diamines with $\mathbf{E t}_{2} \mathbf{Z n}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

11a

12a

14

11b

11c

Figure 3 The numbering of atoms in the ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the compounds 11a-c, 12 a and 14.

(Z)-N,N-dimethyl-2-(4-methyl-1-(4-methylbenzyl)pyrrolidin-3-ylidene)ethan-1amine (11a)

To a solution of N^{1}-allyl- N^{4}, N^{4}-dimethyl- N^{1}-(4-methylbenzyl)but-2-yne-1,4-diamine (512 $\mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexanes, $5 \mathrm{~mL}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(0.5 \mathrm{M}$ in hexanes, $0.6 \mathrm{~mL}, 0.3 \mathrm{mmol})$. Ethylmagnesiurn bromide (2.5 M in $\mathrm{Et}_{2} \mathrm{O}, 0.16 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was then added and the reaction mixture rapidly turned black. After 18 h at $23^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, and $25 \mathrm{wt} \% \mathrm{KOH}$ solution (3 mL) was added dropwise while the reaction flask was cooled in an ice bath. The aqueous layer was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous CaCl_{2}. The reaction mixture was filtered through a filter paper and concentrated in vacuo to give crude product as a yellow oil. Evaporation of solvent and purification of the residue by column chromatography (diethyl ether : isopropyl alcohol : hexane = 1:1:8) gave 11a (464 mg , 90%) as colorless oil. $\mathrm{R}_{\mathrm{f}} 0.47$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.12\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.07(\mathrm{t}, J=9 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}(15,16) \mathrm{H}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}\right), 2.75(\mathrm{q}, J=7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 2.99\left(\mathrm{~m}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{2}\right), 3.02(\mathrm{~m}, 1 \mathrm{H}(\mathrm{B})$, $\left.\mathrm{C}(1) \mathrm{H}_{2}\right), 3.50\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.60\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right)$,
$3.65\left(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 5.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(10,12) \mathrm{H}), 7.24(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.49(\mathrm{C}(6)), 21.21(\mathrm{C}(17)), 37.69(\mathrm{C}(2))$, 44.87 ($\mathrm{C}(15,16)), 56.55(\mathrm{C}(4)), 57.66(\mathrm{C}(14)), 60.25(\mathrm{C}(7)), 61.64(\mathrm{C}(1)), 114.34$ ($\mathrm{C}(5)$), 128.77 ($\mathrm{C}(9,13)), 129.02$ ($(10,12)$), 135.36 ($\mathrm{C}(8))$, 136.73 ($\mathrm{C}(11))$, 149.76 (C(3)).

MS (EI): m/z, \% = $258(<1)\left[\mathrm{M}^{+}\right], 257(<1), 213$ (80), 198 (57), 105 (100).
Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2}$, (\%): C, 79.02; H, 10.14; N, 10.84. Found, \%: C, 78.86; H, 10.09; N, 11.0.

(Z)-4-(2-(1-(4-methoxybenzyl)-4-methylpyrrolidin-3-ylidene)ethyl)morpholine (11b)

Using the procedure described above N-allyl- N -(4-methylbenzyl)-4-morpholinobut-2-yn1 -amine ($596 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane = 1:1:8) to afford 11b (534 $\mathrm{mg}, 89 \%) . \mathrm{R}_{\mathrm{f}} 0.48$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.09\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.01(\mathrm{t}, J=8 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.42\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}(15,18) \mathrm{H}_{2}\right), 2.71(\mathrm{q}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 2.88(\mathrm{~d}$, $\left.J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{2}\right), 2.93\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 2.97(\mathrm{t}, J=8 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.47\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.55(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A})$, $\left.\mathrm{C}(7) \mathrm{H}_{2}\right), 3.59\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.71\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}(16,17) \mathrm{H}_{2}\right), 3.80(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{3}\right), 5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 6.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (500MHz, $\left.\mathrm{CDl}_{3}\right): \delta=17.53(\mathrm{C}(6))$, $37.66(\mathrm{C}(2))$, 53.61 ($\mathrm{C}(15$, 18)), 55.21 ($\mathrm{C}(19)$), 56.74 ($\mathrm{C}(4)$), 57.82 ($\mathrm{C}(14), 60.04$ ($\mathrm{C}(7)$), 61.78 ($\mathrm{C}(1)), 66.99$ ($\mathrm{C}(16,17)$), $113.63(\mathrm{C}(10,12)), 115.49(\mathrm{C}(5)), 129.89(\mathrm{C}(9,13)), 130.93(\mathrm{C}(8))$, $148.32(\mathrm{C}(3)), 158.66(\mathrm{C}(11))$.

MS (EI): m/z, \% = 316 (<1) [M+ ${ }^{+}, 229$ (39), 121 (100), 77 (4).
Anal.calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$, (\%): C, 72.12; H, 8.92; $\mathrm{N}, 8.85$. Found, \%: C, 72.15; H, 8.79; N, 8.49.

(Z)-1-(2-(1-(4-methoxybenzyl)-4-methylpyrrolidin-3-ylidene)ethyl)piperidine (11c)

Using the procedure described above N-allyl- N-(4-methoxybenzyl)-4-(piperidin-1-yl)but-$2-y n-1$-amine ($624 \mathrm{mg}, 2 \mathrm{mmol}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8)$ to afford $\mathbf{1 1 c}$ (515 $\mathrm{mg}, 82 \%) . \mathrm{R}_{\mathrm{f}} 0.79$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.04\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 1.44(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{2}\right), 1.59\left(\mathrm{p}, J=6 \mathrm{~Hz}, 4 \mathrm{H},(\mathrm{C}(16,18)), 1.99\left(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right)\right.$, $2.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}(15,19) \mathrm{H}_{2}\right), 2.71(\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 2.84(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(14) \mathrm{H}_{2}\right), 2.93\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 2.97\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right)$, $3.47\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.55\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.59(\mathrm{~d}, J$
$\left.=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{3}\right), 5.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H}), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.49(\mathrm{C}(6)), 24.39(\mathrm{C}(17)), 25.95(\mathrm{C}(16$, 18)), $37.62(\mathrm{C}(2)), 54.52(\mathrm{C}(15,19)), 55.23(\mathrm{C}(20)), 56.77(\mathrm{C}(4)), 58.24(\mathrm{C}(14))$, $60.10(\mathrm{C}(7)), 61.86(\mathrm{C}(1)), 113.61(\mathrm{C}(10,12)), 116.53(\mathrm{C}(5)), 129.91(\mathrm{C}(9,13))$, 131.05 (C(8)), 147.19 ($\mathrm{C}(3)), 158.63$ (C(11)).

MS (EI): m/z, \% = 314 (<1) [$\left.\mathrm{M}^{+}\right], 121$ (100), 77 (5).
Anal.calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$, (\%): C, 76.39; H, 9.62; N, 8.91. Found, \%: C, 76.44; H, 9.86; N, 8.59.

(Z)-N,N-dimethyl-2-(4-(methyl-d)-1-(4-methylbenzyl)pyrrolidin-3-ylidene)ethan-1-amine-2-d (12a)

Using the procedure described above N^{1}-allyl- N^{4}, N^{4}-dimethyl- N^{1}-(4-methylbenzyl)but-2-yne-1,4-diamine ($512 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{D}_{2} \mathrm{O}\left(\right.$ instead of $\mathrm{H}_{2} \mathrm{O}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford 12a ($480 \mathrm{mg}, 88 \%$). $\mathrm{R}_{\mathrm{f}} 0.85$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{DH}_{2}\right), 2.04(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A})$, $\left.\mathrm{C}(1) \mathrm{H}_{2}\right), 2.23\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}(15,16) \mathrm{H}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}\right), 2.73(\mathrm{p}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(2) \mathrm{H}), 2.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{2}\right), 2.96\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 2.99(\mathrm{t}, J=8$ $\left.\mathrm{Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(1) \mathrm{H}_{2}\right), 3.49\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.59(\mathrm{~d}, J=13 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{A}), \mathrm{C}(7) \mathrm{H}_{2}\right), 3.64\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10$, 12)H), $7.25(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.39(\mathrm{t}, J=19 \mathrm{~Hz}, \mathrm{C}(6)), 21.12(\mathrm{C}(17))$, 37.50 ($\mathrm{C}(2)$), 45.11 ($(15,16)$), 56.69 ($\mathrm{C}(4)), 58.29$ ($\mathrm{C}(14)), 60.45$ (C(7)), 61.88(C(1)), $128.72(\mathrm{C}(9,13)), 128.96(\mathrm{C}(10,12)), 135.84(\mathrm{C}(8)), 136.55(\mathrm{C}(11))$, $147.53(\mathrm{C}(3))$.

MS (EI): m/z, \% = $260(<1)\left[\mathrm{M}^{+}\right], 215$ (36), 199 (30), 105 (100), 79 (7).
Anal.calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{D}_{2} \mathrm{~N}_{2}$, (\%): C, 78.41; N, 10.76. Found, \%: C, 78.48; N, 11.08.
(Z)-3-(5-methoxypentylidene)-4-methyl-1-(4-methylbenzyl)pyrrolidine (14)

Using the procedure described above N-allyl-7-methoxy- N-(4-methylbenzyl)hept-2-yn-1amine ($570 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}$ (instead of $\mathrm{D}_{2} \mathrm{O}$) gave crude product that was purified by column chromatography (diethyl ether : isopropyl alcohol : hexane $=1: 1: 8$) to afford 14 ($517 \mathrm{mg}, 90 \%$). $\mathrm{R}_{\mathrm{f}} 0.63$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.08\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 1.42(\mathrm{p}, J=8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{2}\right), 1.58\left(\mathrm{p}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 1.95\left(\mathrm{qv}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{2}\right)$, $2.03\left(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A}), \mathrm{C}(1) \mathrm{H}_{2}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{3}\right), 2.96(\mathrm{~d}, J=13 \mathrm{~Hz}$, $\left.1 \mathrm{H}(\mathrm{A}), \mathrm{C}(4) \mathrm{H}_{2}\right), 2.99\left(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}_{2}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{3}\right), 3.37(\mathrm{t}, J=7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.47\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(4) \mathrm{H}_{2}\right), 3.59(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{A})$,
$\left.\mathrm{C}(7) \mathrm{H}_{2}\right), 3.64\left(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{B}), \mathrm{C}(7) \mathrm{H}_{2}\right), 5.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.15(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(10,12) \mathrm{H}), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(9,13) \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=17.68(\mathrm{C}(6)), 21.12(\mathrm{C}(19)), 26.08(\mathrm{C}(15))$, 29.20 ($\mathrm{C}(14)$), 29.25 ($\mathrm{C}(16)), 37.30$ ($\mathrm{C}(2)$), 56.73 (C(4)), 58.55 (C(18)), 60.54 $(\mathrm{C}(7)), 62.22(\mathrm{C}(1)), 119.43(\mathrm{C}(5)), 128.77(\mathrm{C}(9,13)), 128.93(\mathrm{C}(10,12)), 135.95$ (C(8)), 136.47 (C(11)), 144.32 (C(3)).

MS (EI): m/z, \% = 287 (18) [M+ ${ }^{+}$, 200 (38), 105 (100), 79 (9).
Anal.calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}$, (\%): C, 79.39; H, 10.17; N, 4.87. Found, \%: C, 79.11; H, 10.00; N, 4.53.

This work was financially supported by the Russian Science Foundation (grant No. 19-73-10113).

References

1. Shao, Y.; Zhang, F.; Zhang, J.; Zhou, X. Angew. Chem. Int. Ed. 2016, 55, 11485.
2. Li, Hui-Jing; Guillot, Regis; Gandon, Vincent. Journal of Organic Chemistry, 2010, 75(24), 8435.
3. Shaibakova, M. G.; Titova, I. G.; Ibragimov, A. G.; Dzhemilev, U.M. Russ. J. Org. Chem. 2008, 44, 1126.

${ }^{1} \mathrm{H}-\mathrm{NMR}$

spectrum
of
(Z)-1-(4-methoxybenzyl)-3-methyl-4-
((trimethylsilyl)methylene)pyrrolidine (3a)

${ }^{13} \mathrm{C}-\mathrm{NMR}$

spectrum
of
(Z)-1-(4-methoxybenzyl)-3-methyl-4-
((trimethylsilyl)methylene)pyrrolidine (3a)

NOESY
spectrum of
(Z)-1-(4-methoxybenzyl)-3-methyl-4-
((trimethylsilyl)methylene)pyrrolidine (3a)

NOESY spectrum of (Z)-3-benzylidene-1-(4-chlorobenzyl)-4-methylpyrrolidine (3b)

${ }^{13}$ C-NMR spectrum of (Z)-3-benzylidene-1-(4-chlorobenzyl)-4-methylpyrrolidine (3b)

${ }^{1} \mathrm{H}$-NMR spectrum of (Z)-3-benzylidene-4-methyl-1-(4-methylbenzyl)pyrrolidine (3c)

${ }^{13} \mathrm{C}$-NMR spectrum of (Z)-3-benzylidene-4-methyl-1-(4-methylbenzyl)pyrrolidine (3c)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-3-methyl-1-(4-methylbenzyl)-4-pentylidenepyrrolidine (3d)

${ }^{13} \mathrm{C}$-NMR spectrum of (Z)-3-methyl-1-(4-methylbenzyl)-4-pentylidenepyrrolidine (3d)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

spectrum
of
(Z)-1-(furan-2-ylmethyl)-3-methyl-4-
((trimethylsilyl)methylene)pyrrolidine (3e)

${ }^{13} \mathrm{C}$-NMR
$($ (trimethylsilyl)methylene)pyrrolidine (3e) of \quad (Z)-1-(furan-2-ylmethyl)-3-methyl-4-

${ }^{1} \mathrm{H}-\mathrm{NMR}$
spectrum
of
(Z)-3-methyl-1-(thiophen-2-ylmethyl)-4-
((trimethylsilyl)methylene)pyrrolidine (3f)

$\underbrace{\text { 人 No. }}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$
$($ (trimethylsilyl)methylene)pyrrolidine $(\mathbf{3 f})$ of \quad (Z)-3-methyl-1-(thiophen-2-ylmethyl)-4-

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-3-(methyl-d)-1-(thiophen-2-ylmethyl)-4-((trimethylsilyl)methylened) pyrrolidine (4f)

${ }^{13} \mathrm{C}$-NMR spectrum of (Z)-3-(methyl-d)-1-(thiophen-2-ylmethyl)-4-((trimethylsilyl)methylene- d)pyrrolidine (4f)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-1-(4-chlorobenzyl)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidine (3g)

${ }^{13} \mathrm{C}$-NMR spectrum of (Z)-1-(4-chlorobenzyl)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidine (3g)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-3-(methyl-d)-1-(4-methylbenzyl)-4-((trimethylsilyl)methylened) pyrrolidine (4h)

${ }^{13}$ C-NMR spectrum of (Z)-3-(methyl- d)-1-(4-methylbenzyl)-4-((trimethylsilyl)methylened)pyrrolidine (4h)

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of (Z)-3-methyl-1-(4-methylbenzyl)-4-(4-methylbenzylidene)pyrrolidine (3i)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (E)-3-(iodo(trimethylsilyl)methylene)-4-(iodomethyl)-1-(4-methylbenzyl)pyrrolidin-2-one (5h)

${ }^{13} \mathrm{C}$-NMR spectrum of (E)-3-(iodo(trimethylsilyl)methylene)-4-(iodomethyl)-1-(4-methylbenzyl)pyrrolidin-2-one (5h)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (E)-3-(iodo(trimethylsilyl)methylene)-4-(iodomethyl)-1-(4-methoxybenzyl)pyrrolidin-2-one (5a)

${ }^{13} \mathrm{C}$-NMR spectrum of (E)-3-(iodo(trimethylsilyl)methylene)-4-(iodomethyl)-1-(4-methoxybenzyl)pyrrolidin-2-one (5a)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 1,4-bis(((Z)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidin-1yl)methyl)benzene (7)

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 1,4-bis(((Z)-3-methyl-4-((trimethylsilyl)methylene)pyrrolidin-1yl)methyl)benzene (7)

${ }^{1} H-N M R \quad$ spectrum of (4Z,4'Z)-4,4'-(octane-2,7-diylidene)bis(3-ethyl-1-(4methylbenzyl)pyrrolidine) (9)

${ }^{13} \mathrm{C}$-NMR
spectrum of
(4Z,4'Z)-4,4'-(octane-2,7-diylidene)bis(3-ethyl-1-(4methylbenzyl)pyrrolidine) (9)

${ }^{1} \mathrm{H}$-NMR spectrum of (Z)-N,N-dimethyl-2-(4-methyl-1-(4-methylbenzyl)pyrrolidin-3-ylidene)ethan-1-amine (12a)

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of (Z)-N,N-dimethyl-2-(4-methyl-1-(4-methylbenzyl)pyrrolidin-3-ylidene)ethan-1-amine (12a)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-1-(2-(1-(4-methoxybenzyl)-4-methylpyrrolidin-3ylidene)ethyl)piperidine (11c)

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of (Z)-1-(2-(1-(4-methoxybenzyl)-4-methylpyrrolidin-3ylidene)ethyl)piperidine (11c)

${ }^{1} \mathrm{H}-\mathrm{NMR} \quad$ spectrum of (Z)-4-(2-(1-(4-methoxybenzyl)-4-methylpyrrolidin-3ylidene)ethyl)morpholine (11b)

${ }^{13}$ C-NMR \quad spectrum of \quad (Z)-4-(2-(1-(4-methoxybenzyl)-4-methylpyrrolidin-3-
ylidene)ethyl)morpholine (11b)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-3-(5-methoxypentylidene)-4-methyl-1-(4-methylbenzyl)pyrrolidine (14a)

${ }^{13} \mathrm{C}$-NMR spectrum of (Z)-3-(5-methoxypentylidene)-4-methyl-1-(4-methylbenzyl)pyrrolidine (14a)

