Supporting Information

A Luminescence-Based Assay for Monitoring Changes in Alpha-Synuclein Aggregation

in Living Cells

Travis J. Nelson,^{1,†} Tiffany Truong,^{1,2,†} BaoLong Truong,¹ Camden V. Bilyeu,¹ Jia Zhao,¹ and

Cliff I. Stains^{1,3,4,5,6,*}

¹Department of Chemistry, University of Nebraska – Lincoln, Lincoln, NE 68588, USA ²Present Address: University of Nebraska Medical Center, Omaha NE 68198, USA ³Nebraska Center for Integrated Biomolecular Communication, University of Nebraska – Lincoln, Lincoln, NE 68588, USA ⁴Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha NE 68198, USA ⁵Department of Chemistry, University of Virginia, Charlottesville, VA, 22904 ⁶University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22904 [†]These authors contributed equally. *E-mail: cstains@virginia.edu

Contents

Methods	2
Figure S1	4
Figure S2	5
Figure S3	6
Table S1	7
References	8

Methods

Cloning: Expression vectors containing unfused N65 (pET-45b) and 66C (pRSF-1b) have been previously described.¹ A DNA sequence encoding WT- α SYN was cloned into a pET-45b vector (Novagen, 71553) containing the N65 sequence using 5' PshAl and 3' BgIII restriction sites and was verified by DNA sequencing. Using the resulting WT- α SYN-N65 as a template, α SYN mutants were generated using site-directed mutagenesis (QuikChange Lightning Multi-Site Directed Mutagenesis Kit, Agilent, 210515) according to manufacturer protocols and were verified by DNA sequencing.

Preparation of EGCG stock: EGCG (Cayman Chemical, 70935) was prepared at 100 mM in DMSO.

Preparation of D-mannitol containing media: Flasks containing terrific broth (TB, 100 mL) liquid culture media were prepared according to manufacturer protocols. D-mannitol was added to the indicated final concentration. Control TB media was also prepared without D-mannitol. The resulting media was then autoclaved prior to use below.

Luminescence solubility assays: Assays were conducted as previously described.² BL21-Gold(DE3) (Agilent, 230132) cells were transformed with the indicated constructs described above and were grown to confluency overnight in TB (5 mL) with shaking at 37 °C in the presence of ampicillin (100 μ g/mL) and kanamycin (50 μ g/mL). The optical density of each culture was measured at 600 nm and cultures were diluted to an OD₆₀₀ = 0.1 in TB or TB containing D-mannitol as indicated. The cells were then grown with shaking at 37 °C until an OD₆₀₀ = 0.6 - 0.8 was reached. Cultures were induced with IPTG (0.2 mM) and EGCG was added where indicated. Culture was measured and normalized to 3.0 in 1 mL. Cells were harvested by centrifugation at 700g for 10 min at 4 °C and resuspended in 200 μ L of 1× Nluc assay buffer (50 mM MES pH = 6.0, 0.5 mM EDTA, 75 mM KCl, 1 mM 2-mercaptoethanol, and 17.5 mM thiourea). The cells were then mixed with an equal volume (200 μ L) of 1× Nluc buffer containing 50 μ M coelenterazine

(GoldBio, CZ2.5, prepared as a 2.5 mM stock in acidified ethanol). The resulting assay mixtures were then loaded into a Corning 384-well assay plate (3824, white, low volume, flat bottom, 40 μ L reaction volume). Luminescence intensities were determined using a SynergyH1 hybrid reader (BioTek) at 30 minutes after substrate addition.

Figure S1

Mutations that increase oligomer formation lead to decreased luminescence. a) The amino acid sequence of α SYN is shown with mutation sites indicated in red. b) Luminescence from bacterial cells expressing the indicated mutant or wild-type (WT) α SYN fused to N65 in the presence of 66C. Error bars represent the standard deviation of two (A30P/A76P) or three (WT, E46K, and H50Q) biological replicates assayed in triplicate. *** indicates a p-value of <0.001.

Figure S2

Increasing the concentration of EGCG does not lead to a significant increase in luminescence relative to 1 μ M EGCG (Fig. 3c). Error bars represent the standard deviation of three biological replicates assayed in triplicate.

Figure S3

Increasing the concentration of D-mannitol results in a decrease in luminescence relative to 0.5 M D-mannitol (Fig. 3d). Error bars represent the standard deviation of two biological replicates assayed in triplicate.

 Table S1: Amino Acid Sequences for Constructs Used in This Work

Protein	Amino Acid Sequence
WT-αSYN- N65	MAHHHHHHVGTGSNDDDDKSP <u>MDVFMKGLSKAKEGVVAAAEKTKQGVAEA</u>
	<u>AGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQ</u>
	KTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPS
	EEGYQDYEPEAQISYASRGGGSSGGGELMVFTLEDFVGDWRQTAGYNLDQ
	VLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYE
A30P-N65ª	MAHHHHHHVGTGSNDDDDKSP <u>MDVFMKGLSKAKEGVVAAAEKTKQGVAEA</u>
	PGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQ
	KTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPS
	EEGYQDYEPEAQISYASRGGGSSGGGELMVFTLEDFVGDWRQTAGYNLDQ
	VLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYE
A53T-N65ª	MAHHHHHHVGTGSNDDDDKSPMDVFMKGLSKAKEGVVAAAEKTKQGVAEA
	<u>AGKTKEGVLYVGSKTKEGVVHGVTTVAEKTKEQVTNVGGAVVTGVTAVAQ</u>
	KTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPS
	<u>EEGYQDYEPEA</u> QISYASRGGGSSGGGELMVFTLEDFVGDWRQTAGYNLDQ
	VLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYE
G51D-N65 ^a	MAHHHHHHVGTGSNDDDDKSPMDVFMKGLSKAKEGVVAAAEKTKQGVAEA
	AGKTKEGVLYVGSKTKEGVVHDVATVAEKTKEQVTNVGGAVVTGVTAVAQ
	KTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPS
	<u>EEGYQDYEPEA</u> QISYASRGGGSSGGGELMVFTLEDFVGDWRQTAGYNLDQ
	VLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYE
A30P/A76P-	MAHHHHHHVGTGSNDDDDKSP <u>MDVFMKGLSKAKEGVVAAAEKTKQGVAEA</u>
N65 ^a	PGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTPVAQ
	KTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPS
	EEGYQDYEPEAQISYASRGGGSSGGGELMVFILEDFVGDWRQIAGYNLDQ
E46K-N65ª	MAHHHHHHVGTGSNDDDDKSP <u>MDVFMKGLSKAKEGVVAAAEKTKQGVAEA</u>
H50Q-N65ª	
660	
	RLUERILALQGJELHHHHHH

Amino acid sequences of aggregating proteins are underlined. ^aThe point mutations of α SYN are denoted in red.

References

- 1. J. Zhao, T. J. Nelson, Q. Vu, T. Truong and C. I. Stains, *ACS Chem. Biol.*, 2016, **11**, 132-138.
- 2. T. J. Nelson, J. Zhao and C. I. Stains, *Methods Enzymol.*, 2019, **622**, 55-66.