

Figure 1(a) X-ray diffraction pattern and (b) EDX analysis of as-synthesized TiO₂/GO/CuFe₂O₄ nanocomposite

Figure 2(a) SEM and (b-d) TEM images of as-synthesized TiO₂/GO/CuFe₂O₄ nanocomposite

Figure 3(a) Diffused reflectance spectra and (b) Tauc plot of TiO₂/GO/CuFe₂O₄ nanocomposite

Figure 4(a-o) Peak elution change of selected pesticides vs retention times' usingTiO₂/GO/

CuFe₂O₄ nanocomposite

Figure 5 (a) Removal efficiency of selected pesticides as function of irradiation time, (b) $\ln(C/C o)$ vs. time (min) curve for photodegradation of selected pesticides and (c) photodegradation rate in the presence of TiO₂/GO/CuFe₂O₄ nanocomposite

Figure 6 (a) Photograph of the magnetic nanocomposite solution, (b) the recyclability of DDE type of pesticide by $TiO_2/GO/CuFe_2O_4$ nanocomposite

Figure 7 Proposed mechanisms of charge separation via direct Z-type scheme under UV illumination