Supporting information

Nitrogen-doped Hollow Carbon Spheres with Tunable Shell Thickness for High-Performance Supercapacitor

Dawei Zhang, Shaodian Shen, Xiuzhen Xiao, Dongsen Mao, Baoman Yan

*Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R.China

Sample no.	Cu ₂ O	3-aminophenol	formaldehyde	Shell thickness
	/g	/g	/ml	/nm
S1	1.5	0.1	0.14	15
S2	1.0	0.1	0.14	32
S3	1.0	0.2	0.28	63
S4	1.0	0.3	0.42	84

Table S1 The details of the materials formulations for NHCSs

Figure S1 SEM images of NHCSs : (a) S1, (b) S2 , (c) S3 and (d) S4.

Figure S2. N_2 adsorbed/desorption isotherms (a) and pore size distribution of NHCSs.

Figure S3. XRD pattern of Cu₂O microspheres and Cu₂O@C@N (before template etching to remove Cu).

Figure S4. XPS spectrum of NHCSs:

Figure S5. The relationship between specific capacitance values and current densities.(0.5, 1, 2, 5, 10, 20 A g^{-1})

Figure S6. SEM images of S1 estimated by galvanostatic charge-discharge profiles for 1000 cycles at current density of 5 A g^{-1} .