Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information: Screening of Metallic Single-Replacements for Lead-free Perovskites with Intrinsic Photovoltaic Functionalities

Clark Zhang and Xuan Luo* National Graphene Research and Development Center, Springfield, Virginia 22151, USA

PACS numbers:

FIG. S1: Convergence studies in the (a) energy cutoff and (b) K-point mesh density. The dotted lines represent the values at which the total energy was converged to five decimal places.

TABLE S1: Structural and Thermal Properties of Calculated Perovskites (PBE unless specified)

Material	Tolerance Factor	Tolerance Factor (prev.)	Octahedral Factor	$\Delta H (eV/f.u.)$	$\Delta H (eV/f.u.)$ (prev.)
MAPbI ₃	0.912	0.9^{1}	0.541	-0.381	0.097^2
MASiI ₃	1.188	1.2^1	0.182	-2.101	-2.1^{1}
MAVI ₃	1.033	-	0.359	-4.272	-
$MACrI_3$	1.055	-	0.332	-3.238-	
$MAMnI_3$	1.077	-0.305	0.163	-	
MAFeI ₃	1.100	-	0.277	1.850	-
$MACoI_3$	1.084	-	0.295	-1.905	-
MANiI ₃	1.069	-	0.314	-0.626	-
$MACuI_3$	1.055	-	0.332	4.716	-
$MAZnI_3$	1.003	1.1^{1}	0.400	-3.129	-0.3^{1}
$MAGaI_3$	1.096	1.1^{1}	0.282	-3.075	0.2^{1}
MAGeI ₃	1.055	1.0^{1}	0.332	-3.537	0.1^{1}
$MAMoI_3$	1.069	-	0.314	-2.612	-
MARhI_3	1.079	-	0.302	6.095	-
$MARuI_3$	1.073	-	0.309	-4.680	-
$MAPdI_3$	1.010	-	0.391	-1.116	-
$MAInI_3$	1.030	-	0.364	-2.612	-
$MASnI_3$	1.069	0.9^{1}	0.314	-3.342	-0.2^{1}
$MASbI_3$	0.957	-	0.468	3.401	-
MAWI ₃	1.044	-	0.345	-3.401	-
MAReI ₃	1.092	-	0.286	2.014	-
$MAIrI_3$	1.073	-	0.309	-0.299	-
$MAPtI_3$	1.030	-	0.468	-4.626	-
$MABiI_3$	0.957	-	0.468	-117.662	-
MAZnCl ₃	1.065	-	0.527	-13.70	-

R. Ali, G.-J. Hou, Q.-B. Zhu, Z.-G. Yan, Q.-R. Zheng and G. Su, J. Mater. Chem. A, 2018, 6, 9220–9227.
 G. P. Nagabhushanaa, R. Shivaramaiaha and A. Navrotsky, J. of App. Physics., 2016, 28, 7717721.

FIG. S2: Total Density of States for MAPbI₃ with the partial Density of States of Pb in red and I in blue.

FIG. S3: A close up on (a) MAMnI₃, (b) MAFeI₃, (c) MARuI₃ whose band gaps opened up when triiodide is replaced with tribromide. The yellow region represents the band gap.

FIG. S4: Imaginary part of the calculated dielectric function, ε_2 of MAPbI₃ in black, MASnI₃ in blue, MAGeI₃ in red, MABiBr₃ in green, MAGeBr₃ in cyan, MAPbBr₃ in pink, MASnBr₃ in orange

FIG. S5: Band structures shifted so the Fermi energy is at 0 $\rm eV$ 1a: $MAPbI_3$ 1b: $MASiI_3$ 1c: $MAVI_3$ 2a: MACrI₃ 2b: MAMnI₃ 2c: MAFeI₃ 3a: MACoI₃ 3b: MANiI₃ 3c: MACuI₃ 4a: MAZnI₃ 4b: MAGaI₃ 4c: MAGeI₃

FIG. S6: Band structures shifted so the Fermi energy is at 0 eV 5a: MARuI₃ 5b: MARhI₃ 5c: MAInI₃ 6a: MASnI₃ 6b: MASbI₃ 6c: MAWI₃ 7a: MABiI₃ 7b: MAPtI₃

FIG. S7: Band structures shifted so the Fermi energy is at 0 eV
1a: MAPbBr₃ 1b: MASiBr₃ 1c: MAVBr₃
2a: MACrBr₃ 2b: MAMnBr₃ 2c: MAFeBr₃
3a: MACoBr₃ 3b: MANiBr₃ 3c: MACuBr₃
4a: MAZnBr₃ 4b: MAGaBr₃ 4c: MAGeBr₃

FIG. S8: Band structures shifted so the Fermi energy is at 0 $\rm eV$ 5a: MAMoBr₃ 5b: MARuBr₃ 5c: MARhBr₃ 6a: MAPdBr₃ 6b: MAInBr₃ 6c: MASnBr₃ 7a: MASbBr₃ 7b: MAWBr₃ 7c: MABiBr₃ 8a: MAReBr₃ 8b: MAIrBr₃ 8c: MAPtBr₃