Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Rh(III)-Catalyzed Spiroannulation of 3-Arylquinoxalin-2(1H)-ones

with Alkynes: Practical Access to Spiroquinoxalinones

Yuanfei Zhang,^{a,b} Ting Huang,^a Xinghua Li,^a Min Zhang,^b Ying Song,^a Kelin Huang,^{*c} and Weiping Su*^b

^aGuangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. ^cChina Academy of Science and Technology Development Guangxi Branch, Nanning 530022, China

*E-mail: wpsu@fjirsm.ac.cn; huanghn@sina.com

Table of Contents

I. General Information	S1
II . Optimization of the reaction conditions	S1-S2
III. General procedure	S2
IV. Graphical Information	S2-S3
V. Characterization data for the spirocyclic products	S3-S14
VI. Gram scale synthesis and synthetic transformations	S14-S15
VII. Mechanistic studies	S16-S19
VIII. X-ray crystallographic analysis of 3g	S19-S20
IX. References	S20
X. ¹ H, ¹³ C and ¹⁹ F NMR spectra	S21-S54

I. General Information

All reactions were performed under Argon. The reagents used for experiments were purchased from Adamas, Aladdin, Accela, Sigma-Aldrich, Acros Organics, TCI, and Alfa Aesar and used as received unless otherwise noted. DMF, DCE, Toluene, PhCl, 1,4-Dioxane, Aceton and CH₃CN were distilled from CaH₂ under Argon. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker Avance 400 MHz and 300 MHz spectrometer. Chemical shifts were reported in the scale relative to TMS (0.00 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. High resolution mass spectroscopy (HRMS) was recorded on a TOF MS mass spectrometer. Column chromatography was carried out on silica gel (300-400 mesh). X-Ray single-crystal diffraction data were collected on Bruker D8 VENTURE X-ray single crystal diffractometer at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. 1-Methyl-3-phenylquinoxalin-2(1*H*)-one derivatives¹⁻³ and internal alkynes^{4,5} were prepared according to the literature procedures.

35 mL Schlenk tubes were used for all reactions:

II. Optimization of the reaction conditions

Table S1. Seleced results from optimization studies^a

	+ Ph-=	─────────────────────────────────────	% [Cp*RhCl₂]₂ 	N O O N N H Ph
Ia	-	-4		3a Ph
Entry	$AgSbF_6 (mol\%)$	Solvent	Additive	Yield $(\%)^b$
1	4	DCE	-	< 10
2	4	Dioxane	-	< 10
3	4	CH ₃ CN	-	62
4	4	PhCl	-	< 10
5	4	Aceton	-	16
6	4	Toluene	-	Trace
7	4	^t BuOH	-	< 10
8	4	DMF	-	< 10

9°	4	CH ₃ CN	PivOH	86
10	5	CH ₃ CN	PivOH	91
11	6	CH ₃ CN	PivOH	97
12	6	CH ₃ CN	Phenol	59
13	6	CH ₃ CN	TFA	< 10
14	6	CH ₃ CN	MsOH	0
15 ^c	3	CH ₃ CN	PivOH	76
16 ^d	1.5	CH ₃ CN	PivOH	60
17 ^{c,e}	3	CH ₃ CN	PivOH	78
18 ^{d,e}	1.5	CH ₃ CN	PivOH	65
19	0	CH ₃ CN	PivOH	0
20 ^f	6	CH ₃ CN	PivOH	0

^{*a*} Reaction conditions: **1a** (0.2 mmol, 0.0473 g), **2a** (0.22 mmol, 0.0393 g), $[Cp*RhCl_2]_2$ (1 mol%, 0.0013 g), AgSbF₆ (4 mol%, 0.0028 g), additive (1 equiv), 2 mL of solvent, 100 °C, 24 h. ^{*b*} Isolated yields. ^{*c*} 0.5 mmol scale, 0.5 mol% of $[Cp*RhCl_2]_2$ was used. ^{*d*} 0.5 mmol scale, 0.25 mol% of $[Cp*RhCl_2]_2$ was used. ^{*e*} The reaction ran at 120 °C for 24 h. ^{*f*} In the absence of $[Cp*RhCl_2]_2$

III. General Procedure:

An oven dried 35 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with $[Cp*RhCl_2]_2$ (1 mol%), AgSbF₆ (6 mol%), 1-methyl-3-phenylquinoxalin-2(1*H*)-one (0.2 mmol), 1,2-diphenylethyne (1.1 equiv), PivOH (1 equiv), and CH₃CN (2 mL) under Argon, and was evacuted and refilled with Argon for three times. Then, the septum was replaced by a Teflon screwcap under Argon flow. The reaction mixture was stirred at 100 °C for 24 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (30 mL). The filtrate was concentrated under reduced pressure. The residue was then purified by chromatography on silica gel to provide the corresponding product **3** or **4**.

VI. Graphical Information:

V. Characterization data for the spirocyclic products:

4'-Methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3a): The title compound was prepared according to the general procedure. White solid (80.5 mg, 97%; eluent: 5%-15% ethyl acetate/hexane). Mp: 231-233 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.51-7.35 (m, 7H), 7.33-7.25 (m, 2H), 7.18-7.15 (dd,** *J* **= 7.4, 4.4 Hz, 4H), 7.09 (td,** *J* **= 7.3, 1.7 Hz, 1H), 7.01 (dd,** *J* **= 7.5, 1.5 Hz, 1H), 6.94 (pd,** *J* **= 7.4, 1.5 Hz, 2H), 6.65 (dd,** *J* **= 7.3, 1.6 Hz, 1H), 4.25 (s, 1H), 3.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.34, 146.99, 144.20, 143.16, 143.01, 134.46, 134.34, 134.09, 129.93, 129.42, 129.20, 128.70, 128.67, 127.89, 127.84, 127.35, 126.73, 123.72, 122.02, 121.41, 119.59, 114.71, 114.43, 73.25, 29.61. HRMS (ESI): calcd for C₂₉H₂₃N₂O [M+H]⁺: 415.1810, found 415.1802.**

4',5-Dimethyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3b):** The title compound was prepared according to the general procedure. White solid (79.7 mg, 93%; eluent: 5%-15% ethyl acetate/hexane). Mp: 225-227 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.40 (m, 7H), 7.19-7.17 (m, 3H), 7.12 (s, 1H), 7.09-7.00 (m, 2H), 6.98-6.91 (m, 3H), 6.65 (dd, *J* = 7.2, 1.8 Hz, 1H), 4.25 (s, 1H), 3.52 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.50, 144.46,

144.23, 143.41, 143.06, 139.24, 134.66, 134.47, 134.18, 129.97, 129.48, 128.77, 128.71, 127.84, 127.31, 127.27, 123.68, 122.21, 121.80, 119.55, 114.72, 114.41, 72.95, 29.60, 21.67. HRMS (ESI): calcd for $C_{30}H_{25}N_2O$ [M+H]⁺: 429.1967, found 429.1975.

4',6-Dimethyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3c):** The title compound was prepared according to the general procedure. White solid (81.6 mg, 95%; eluent: 5%-15% ethyl acetate/hexane). Mp: 230-232 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.37 (m, 7H), 7.23-7.15 (m, 5H), 7.04 (s, 1H), 7.01-6.90 (m, 3H), 6.64 (d, *J* = 7.2 Hz, 1H), 4.31 (s, 1H), 3.52 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.43, 147.53, 143.62, 142.78, 140.61, 136.77, 134.65, 134.31, 129.93, 129.77, 129.44, 128.64, 128.50, 127.83, 127.23, 123.73, 123.05, 121.18, 119.40, 114.54, 114.41, 73.25, 29.59, 21.60. HRMS (ESI): calcd for C₃₀H₂₅N₂O [M+H]⁺: 429.1967, found 429.1953.

5-Isopropyl-4'-methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3d): The title compound was prepared according to the general procedure. White solid (82.2 mg, 90%; eluent: 5%-15% ethyl acetate/hexane). Mp: 183-185 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.53-7.39 (m, 7H), 7.24-7.16 (m, 4H), 7.11 (d,** *J* **= 7.7 Hz, 1H), 7.04-6.92 (m, 4H), 6.66 (dd,** *J* **= 7.2, 1.7 Hz, 1H), 4.28 (s, 1H), 3.53 (s, 3H), 2.93 (hept,** *J* **= 6.9 Hz, 1H), 1.27 (d,** *J* **= 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.60, 150.36, 144.61, 144.45, 143.31, 143.25, 134.69, 134.53, 134.25, 130.00, 129.51, 128.81, 128.73, 127.85, 127.30, 124.68, 123.70, 121.95, 119.79, 119.57, 114.78, 114.42, 72.95, 34.43, 29.62, 24.22, 24.12. HRMS (ESI): calcd for C₃₂H₂₉N₂O [M+H]⁺: 457.2280, found 457.2282.**

5-Methoxy-4'-methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3e): The title compound was prepared according to the general procedure. White solid (46.1 mg, 52%; eluent: 5%-15% ethyl acetate/hexane). Mp: 214-216 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.46-7.34 (m, 7H), 7.17-7.15 (m, 3H), 7.04-6.99 (m, 2H), 6.95-6.91 (m, 2H), 6.82 (d,** *J* **= 2.3 Hz, 1H), 6.66 (dd,** *J* **= 7.4, 1.5 Hz, 1H), 6.58 (dd,** *J* **= 8.2, 2.3 Hz, 1H), 4.19 (s, 1H), 3.76 (s, 3H), 3.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.49, 160.94, 144.95, 142.73, 139.14, 134.43, 134.37, 129.91,**

129.39, 128.76, 128.67, 127.88, 127.79, 127.35, 123.64, 122.69, 119.57, 114.71, 114.37, 111.25, 108.02, 72.60, 55.55, 29.58. HRMS (ESI): calcd for $C_{30}H_{25}N_2O_2$ [M+H]⁺: 445.1916, found 445.1913.

4'-Methyl-2,3-diphenyl-1'*H***-spiro[cyclopenta[***b***]naphthalene-1,2'-quinoxalin]-3'(4'***H***)-one (3f): The title compound was prepared according to the general procedure. White solid (75.3 mg, 81%; eluent: 5%-15% ethyl acetate/hexane). Mp: 211-213 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.76 (d,** *J* **= 7.9 Hz, 1H), 7.66-7.61 (m, 2H), 7.56-7.50 (m, 3H), 7.49-7.38 (m, 7H), 7.23-7.15 (m, 3H), 7.07-7.05 (m, 1H), 7.01-6.92 (m, 2H), 6.66 (dd,** *J* **= 6.0, 3.0 Hz, 1H), 4.32 (s, 1H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.45, 144.83, 143.23, 141.51, 134.51, 134.31, 134.13, 134.08, 132.58, 129.99, 129.52, 128.74, 128.58, 128.33, 128.24, 128.01, 127.85, 127.49, 126.42, 125.78, 123.80, 121.01, 119.87, 119.62, 114.77, 114.48, 72.83, 29.62. HRMS (ESI): calcd for C₃₃H₂₅N₂O [M+H]⁺: 465.1967, found 465.1966.**

5-Chloro-4'-methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3g): The title compound was prepared according to the general procedure. White solid (77.9 mg, 87%; eluent: 5%-15% ethyl acetate/hexane). Mp: 221-223 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.46-7.32 (m, 7H), 7.24 (s, 1H), 7.20-7.15 (m, 3H), 7.05 (s, 2H), 7.01-6.90 (m, 3H), 6.68-6.62 (m, 1H), 4.23 (s, 1H), 3.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 165.83, 145.81, 145.18, 145.10, 142.04, 135.31, 133.97, 133.79, 133.61, 129.87, 129.27, 128.83, 128.53, 128.17, 127.89, 127.65, 126.43, 123.85, 122.96, 121.67, 119.83, 114.72, 114.51, 72.86, 29.65. HRMS (ESI): calcd for C₂₉H₂₂ClN₂O [M+H]⁺: 449.1421, found 449.1423.**

5-Bromo-4'-methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3h): The title compound was prepared according to the general procedure. White solid (69.1 mg, 70%; eluent: 5%-15% ethyl acetate/hexane). Mp: 240-242 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.32 (m, 8H), 7.22-7.16 (m, 4H), 7.03-6.89 (m, 4H), 6.65 (d,** *J* **= 7.0 Hz, 1H), 4.23 (s, 1H), 3.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) 165.75, 145.70, 145.61, 145.43, 142.00, 133.94, 133.77, 133.56, 129.87, 129.36, 129.26, 128.84, 128.52, 128.17, 127.88, 127.66, 124.53, 123.86, 123.46, 123.33, 119.84,**

114.72, 114.51, 72.93, 29.65. HRMS (ESI): calcd for $C_{29}H_{22}BrN_2O$ [M+H]⁺: 493.0916, found 493.0894.

4'-Methyl-2,3-diphenyl-5-(trifluoromethyl)-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3**i): The title compound was prepared according to the general procedure. White solid (70.4 mg, 73%; eluent: 5%-15% ethyl acetate/hexane). Mp: 221-223 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.50-7.36 (m, 8H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.25-7.12 (m, 3H), 7.05-7.00 (m, 1H), 6.99-6.89 (m, 2H), 6.62 (dd, *J* = 5.8, 3.2 Hz, 1H), 4.42 (s, 1H), 3.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.65, 150.39, 146.09, 144.23, 141.97, 133.89, 133.65, 133.53, 131.58 (q, *J* = 32.1 Hz), 129.92, 129.28, 129.00, 128.43, 128.35, 127.97, 127.81, 123.90 (q, *J* = 3.9 Hz), 124.20 (q, *J* = 273.6 Hz), 124.01, 122.29, 119.95, 117.97 (q, *J* = 3.7Hz), 114.78, 114.62, 73.26, 29.64. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.17 (s, 3F). HRMS (ESI): calcd for C₃₀H₂₂F₃N₂O [M+H]⁺: 483.1684, found 483.1668.

4'-Methyl-3'-oxo-2,3-diphenyl-3',4'-dihydro-1'H-spiro[indene-1,2'-quinoxaline]-5-

carbonitrile (3j): The title compound was prepared according to the general procedure using $[Cp*RhCl_2]_2$ (2 mol%) and AgSbF₆ (12 mol%). White solid (44.9 mg, 51%; eluent: 5%-20% ethyl acetate/hexane). Mp: 227-229 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.47-7.36 (m, 6H), 7.35-7.30 (m, 2H), 7.24-7.13 (m, 4H), 7.03-6.91 (m, 3H), 6.67 (dd, J = 7.4, 1.4 Hz, 1H), 4.24 (s, 1H), 3.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.14, 151.16, 146.28, 144.41, 141.43, 133.48, 133.16, 133.12, 130.93, 129.80, 129.14, 128.99, 128.48, 128.32, 127.98, 124.32, 124.07, 122.61, 120.14, 118.89, 114.75, 114.66, 112.97, 73.43, 29.75. HRMS (ESI): calcd for C₃₀H₂₂N₃O [M+H]⁺: 440.1763, found 440.1756.

Ethyl-4'-methyl-3'-oxo-2,3-diphenyl-3',4'-dihydro-1'H-spiro[indene-1,2'-quinoxaline]-5-

carboxylate (3k): The title compound was prepared according to the general procedure. White solid (86.7 mg, 89%; eluent: 5%-25% ethyl acetate/hexane). Mp: 210-212 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.82 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.48-7.31 (m, 7H), 7.23-7.11 (m, 4H), 7.01-6.90 (m, 3H), 6.65 (d, *J* = 7.2 Hz, 1H), 4.42-4.25 (m, 3H), 3.49 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.39, 165.71, 151.37, 145.14, 143.58, 142.39, 133.93, 133.87, 133.74, 131.51, 129.88, 129.35, 128.81, 128.61, 128.51, 128.11, 127.87, 127.58, 123.88, 122.08, 121.84, 119.82, 114.71, 114.52, 73.19, 61.09, 29.66, 14.33. HRMS (ESI): calcd for C₃₂H₂₇N₂O₃ [M+H]⁺: 487.2022, found 487.2013.

Ethyl 2-(3'-oxo-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-4'(3'***H***)-yl)acetate (3l): The title compound was prepared according to the general procedure. White solid (86.5 mg, 89%; eluent: 5%-25% ethyl acetate/hexane). Mp: 181-183 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.50-7.37 (m, 7H), 7.34-7.26 (m, 3H), 7.24-7.17 (m, 3H), 7.13-7.06 (m, 1H), 7.01-6.88 (m, 2H), 6.85 (d,** *J* **= 7.7 Hz, 1H), 6.67 (dd,** *J* **= 7.6, 1.2 Hz, 1H), 5.15 (d,** *J* **= 17.5 Hz, 1H), 4.50 (d,** *J* **= 17.5 Hz, 1H), 4.35-4.16 (m, 3H), 1.27 (t,** *J* **= 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 168.30, 166.91, 146.51, 143.57, 143.35, 143.01, 134.55, 134.23, 133.88, 130.01, 129.42, 129.33, 128.78, 127.99, 127.93, 127.74, 127.43, 126.77, 124.15, 122.46, 121.40, 119.82, 115.34, 114.09, 72.92, 61.70, 44.23, 14.22. HRMS (ESI): calcd for C₃₂H₂₇N₂O₃ [M+H]⁺: 487.2022, found 487.2027.**

4'-(Cyclopropylmethyl)-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3m): The title compound was prepared according to the general procedure. White solid (83.7 mg, 92%; eluent: 5%-15% ethyl acetate/hexane). Mp: 183-185 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.55-7.38 (m, 7H), 7.38-7.29 (m, 2H), 7.26 (d,** *J* **= 7.4 Hz, 1H), 7.20 (d,** *J* **= 2.8 Hz, 3H), 7.12 (t,** *J* **= 6.7 Hz, 1H), 6.96 (dd,** *J* **= 8.9, 5.3 Hz, 2H), 6.69-6.60 (m, 1H), 4.25 (s, 1H), 4.13 (dd,** *J* **= 14.5, 6.3 Hz, 1H), 4.02 (dd,** *J* **= 14.5, 7.3 Hz, 1H), 1.40-1.27 (m, 1H), 0.58-0.51 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.23, 147.20, 144.27, 143.19, 142.89, 134.62, 134.49, 134.10, 130.03, 129.49, 129.20, 128.75, 127.95, 127.84, 127.36, 126.74, 123.64, 122.03, 121.44, 119.50, 115.08, 114.85, 73.13, 46.05, 9.84, 4.04. HRMS (ESI): calcd for C₃₂H₂₇N₂O [M+H]⁺: 455.2123, found 455.2112.**

4',6',7'-Trimethyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3n):** The title compound was prepared according to the general procedure. White solid (66.4 mg, 75%; eluent: 5%-15% ethyl acetate/hexane). Mp: 257-259 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.36 (m, 7H),

7.29 (t, J = 8.0 Hz, 2H), 7.19-7.15 (m, 4H), 7.08 (td, J = 7.3, 1.6 Hz, 1H), 6.83 (s, 1H), 6.47 (s, 1H), 4.06 (s, 1H), 3.52 (s, 3H), 2.32 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.24, 147.13, 144.14, 143.12, 142.95, 134.68, 134.15, 131.86, 131.67, 129.94, 129.45, 129.10, 128.69, 127.86, 127.81, 127.39, 127.25, 126.61, 126.58, 121.95, 121.32, 116.32, 115.84, 73.30, 29.58, 19.43, 19.22. HRMS (ESI): calcd for C₃₁H₂₇N₂O [M+H]⁺: 443.2123, found 443.2120.

6',7'-Difluoro-4'-methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (30): The title compound was prepared according to the general procedure. Pale yellow solid (74.8 mg, 83%; eluent: 5%-15% ethyl acetate/hexane). Mp: 216-218 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.44-7.27 (m, 9H), 7.20-7.12 (m, 5H), 6.78 (dd, J = 11.5, 7.3 Hz, 1H), 6.40 (dd, J = 10.7, 7.3 Hz, 1H), 4.29 (s, 1H), 3.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 165.98, 147.22 (d, J = 13.3 Hz), 146.45, 145.09-144.65 (m), 143.97, 143.23, 143.1, 142.56 (d, J = 13.5 Hz), 133.99 (d, J = 13.5 Hz), 130.72 (d, J = 8.2 Hz), 129.85, 129.46, 129.34, 128.65, 128.00, 127.90, 127.53, 126.89, 124.65 (d, J = 5.0 Hz), 122.09, 121.61, 104.09 (d, J = 23.1 Hz), 103.26 (d, J = 21.8 Hz), 73.04, 29.85. ¹⁹F NMR (376 MHz, CDCl₃) \delta -144.03 (d, J = 22.4 Hz, 1F), -149.04 (d, J = 22.4 Hz, 1F). HRMS (ESI): calcd for C₂₉H₂₁F₂N₂O [M+H]⁺: 451.1622, found 451.1621.**

6',7'-Dichloro-4'-methyl-2,3-diphenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (3p): The title compound was prepared according to the general procedure. Pale yellow solid (83.2 mg, 86%; eluent: 5%-15% ethyl acetate/hexane). Mp: 239-241 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.45-7.24 (m, 9H), 7.22-7.11 (m, 5H), 7.00 (s, 1H), 6.61 (s, 1H), 4.33 (s, 1H), 3.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 165.63, 146.52, 143.76, 143.30, 143.10, 134.01, 133.87, 133.79, 129.83, 129.55, 129.34, 128.71, 128.23, 128.08, 128.01, 127.59, 126.97, 126.50, 122.01, 121.94, 121.67, 115.77, 115.26, 72.96, 29.74. HRMS (ESI): calcd for C₂₉H₂₁Cl₂N₂O [M+H]⁺: 483.1031, found 483.1029.**

2',3'-Diphenylspiro[benzo[b][1,4]oxazine-3,1'-inden]-2(4H)-one (3q): The title compound was

prepared according to the general procedure. White solid (70.9 mg, 88%; eluent: 5%-10% ethyl acetate/hexane). Mp: 180-182 °C. ¹H NMR (400 MHz, CDCl3) δ 7.49-7.30 (m, 9H), 7.25-7.20 (m, 4H), 7.16-7.09 (m, 2H), 7.04 (td, *J* = 7.7, 1.2 Hz, 1H), 6.93 (t, *J* = 7.7 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 4.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.19, 145.42, 143.88, 143.27, 142.52, 141.18, 133.88, 133.27, 131.87, 129.89, 129.81, 129.32, 128.80, 128.24, 128.09, 127.77, 127.15, 125.34, 122.18, 121.85, 120.33, 116.74, 115.54, 71.88. HRMS (ESI): calcd for C₂₈H₂₀NO₂ [M+H]⁺: 402.1494, found 402.1488.

4'-Methyl-2,3-di-p-tolyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4a): The title compound was prepared according to the general procedure. White solid (86.0 mg, 97%; eluent: 5%-15% ethyl acetate/hexane). Mp: 209-211 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.39 (d,** *J* **= 8.0 Hz, 2H), 7.34-7.28 (m, 4H), 7.26 (d,** *J* **= 7.9 Hz, 2H), 7.14 (d,** *J* **= 7.4 Hz, 1H), 7.09-6.99 (m, 4H), 6.98-6.91 (m, 2H), 6.65 (dt,** *J* **= 6.8, 3.3 Hz, 1H), 4.22 (s, 1H), 3.53 (s, 3H), 2.45 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.52, 146.96, 143.68, 143.42, 142.45, 137.55, 137.01, 134.47, 131.67, 131.23, 129.78, 129.44, 129.33, 129.16, 128.79, 128.67, 126.49, 123.69, 121.87, 121.32, 119.52, 114.79, 114.40, 73.10, 29.62, 21.47, 21.32. HRMS (ESI): calcd for C₃₁H₂₇N₂O [M+H]⁺: 443.2123, found 443.2113.**

2,3-Bis(3,5-dimethylphenyl)-4'-methyl-1'*H*-**spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one** (4b): The title compound was prepared according to the general procedure. White solid (66.8 mg, 71%; eluent: 5%-15% ethyl acetate/hexane). Mp: 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.23 (m, 2H), 7.14 (d, *J* = 7.3 Hz, 1H), 7.10-7.04 (m, 3H), 7.01-6.87 (m, 6H), 6.78 (s, 1H), 6.65 (d, *J* = 6.9 Hz, 1H), 4.18 (s, 1H), 3.51 (s, 3H), 2.32 (s, 6H), 2.15 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.67, 146.90, 144.09, 143.62, 142.76, 137.88, 136.78, 134.56, 134.43, 133.77, 129.37, 129.07, 129.03, 128.80, 127.67, 126.99, 126.46, 123.55, 121.95, 121.41, 119.41, 114.62, 114.29, 73.14, 29.55, 21.40, 21.35. HRMS (ESI): calcd for C₃₃H₃₁N₂O [M+H]⁺: 471.2436, found 471.2426.

2,3-Bis(4-methoxyphenyl)-4'-methyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4c): The title compound was prepared according to the general procedure. White solid (78.9 mg, 83%; eluent: 5%-15% ethyl acetate/hexane). Mp: 170-172 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.39-7.24 (m, 6H), 7.09 (d,** *J* **= 7.3 Hz, 1H), 7.06-7.00 (m, 2H), 6.99-6.89 (m, 4H), 6.72 (d,** *J* **= 8.7 Hz, 2H), 6.65 (d,** *J* **= 7.5 Hz, 1H), 4.17 (s, 1H), 3.87 (s, 3H), 3.76 (s, 3H), 3.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.56, 159.12, 158.63, 146.77, 143.47, 142.96, 141.42, 134.43, 131.09, 130.68, 129.11, 128.79, 126.91, 126.59, 126.31, 123.67, 121.79, 121.10, 119.55, 114.72, 114.39, 114.13, 113.38, 72.96, 55.23, 55.09, 29.58. HRMS (ESI): calcd for C₃₁H₂₇N₂O₃ [M+H]⁺: 475.2022, found 475.2027.**

2,3-Bis(4-fluorophenyl)-4'-methyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4d): The title compound was prepared according to the general procedure. White solid (77.4 mg, 86%; eluent: 5%-15% ethyl acetate/hexane). Mp: 233-235 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.43-7.28 (m, 5H), 7.25 (d,** *J* **= 7.4 Hz, 1H), 7.17-7.07 (m, 4H), 7.07-6.91 (m, 3H), 6.88 (t,** *J* **= 8.7 Hz, 2H), 6.68-6.63 (m, 1H), 4.27 (s, 1H), 3.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.09, 163.46 (d,** *J* **= 37.7 Hz), 161.00 (d,** *J* **= 37.9 Hz), 146.76, 143.44, 142.75, 142.11, 134.17, 131.62 (d,** *J* **= 7.9 Hz), 131.16 (d,** *J* **= 8.0 Hz), 130.09 (d,** *J* **= 3.3 Hz), 129.31, 128.64, 126.95, 123.85, 122.13, 121.21, 119.85, 115.86 (d,** *J* **= 21.5 Hz), 115.12, 114.91, 114.78, 114.52, 73.28, 29.60. ¹⁹F NMR (376 MHz, CDCl₃) \delta -113.13 (s, 1F), -113.79 (s, 1F). HRMS (ESI): calcd for C₂₉H₂₁F₂N₂O [M+H]⁺: 451.1622, found 451.1617.**

2,3-Bis(4-chlorophenyl)-4'-methyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4e): The title compound was prepared according to the general procedure. White solid (86.1 mg, 89%; eluent: 5%-15% ethyl acetate/hexane). Mp: 232-234 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.38 (q,** *J* **= 8.5 Hz, 4H), 7.34-7.28 (m, 3H), 7.23 (d,** *J* **= 7.5 Hz, 1H), 7.16 (d,** *J* **= 8.6 Hz, 2H), 7.12-7.07 (m, 2H), 7.03-7.01 (m, 1H), 6.99-6.93 (m, 2H), 6.0 (dd,** *J* **= 7.1, 1.8 Hz, 1H), 4.21 (s, 1H), 3.49 (s, 3H). ¹³C NMR (101 MHz, CDCl3) \delta 165.92, 146.76, 143.43, 142.44, 142.38, 134.02, 133.49, 132.52, 132.39, 131.11, 130.72, 129.35, 129.13, 128.64, 128.27, 127.12, 123.88, 122.12, 121.26, 119.95, 114.83, 114.56, 73.27, 29.63. HRMS (ESI): calcd for C₂₉H₂₁Cl₂N₂O [M+H]⁺: 483.1031, found 483.1016.**

2,3-Bis(4-bromophenyl)-4'-methyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4f): The title compound was prepared according to the general procedure. White solid (101.9 mg, 89%; eluent: 5%-15% ethyl acetate/hexane). Mp: 208-210 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.56 (d,** *J* **= 8.4 Hz, 2H), 7.35-7.22 (m, 8H), 7.16-7.06 (m, 2H), 7.05-7.00 (m, 1H), 6.99-6.92 (m, 2H), 6.63 (dd,** *J* **= 5.8, 3.3 Hz, 1H), 4.28 (s, 1H), 3.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 165.89, 146.80, 143.45, 142.50, 142.30, 134.03, 133.01, 132.87, 132.12, 131.42, 131.25, 131.03, 129.39, 128.61, 127.18, 123.93, 122.29, 122.14, 121.87, 121.29, 119.95, 114.87, 114.59, 73.25, 29.65. HRMS (ESI): calcd for C₂₉H₂₁Br₂N₂O [M+H]⁺: 571.0021, found 571.0018.**

1,1'-((4'-Methyl-3'-oxo-3',4'-dihydro-1'*H***-spiro[indene-1,2'-quinoxaline]-2,3-diyl)bis(4,1phenylene))diethanone (4g): The title compound was prepared according to the general procedure. White solid (74.8 mg, 75%; eluent: 5%-25% ethyl acetate/hexane). Mp: 152-154 °C. ¹H NMR (300 MHz, CDCl3) \delta 7.95 (d,** *J* **= 8.3 Hz, 2H), 7.71 (d,** *J* **= 8.5 Hz, 2H), 7.47-7.42 (m, 4H), 7.32-7.24 (m, 1H), 7.19 (d,** *J* **= 7.4 Hz, 1H), 7.14-7.05 (m, 2H), 7.03-6.96 (m, 1H), 6.96-6.87 (m, 2H), 6.64-6.62 (m, 1H), 4.62 (s, 1H), 3.44 (s, 3H), 2.60 (s, 3H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 197.73, 165.83, 147.00, 144.32, 143.72, 142.02, 139.15, 138.99, 136.62, 135.73, 134.05, 130.00, 129.61, 129.42, 128.87, 128.51, 127.97, 127.49, 123.99, 122.23, 121.44, 119.91, 114.92, 114.60, 73.46, 29.64, 26.67, 26.55. HRMS (ESI): calcd for C₃₃H₂₇N₂O₃ [M+H]⁺: 499.2022, found 499.2011.**

Diethyl-4,4'-(4'-methyl-3'-oxo-3',4'-dihydro-1'H-spiro[indene-1,2'-quinoxaline]-2,3-

diyl)dibenzoate (4h): The title compound was prepared according to the general procedure. White solid (91.6 mg, 82%; eluent: 5%-30% ethyl acetate/hexane). Mp: 206-208 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 7.44 (dd, *J* = 14.6, 8.2 Hz, 4H), 7.32-7.28 (m, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.02-6.97 (m, 1H), 6.95-6.89 (m, 1H), 6.65-6.63 (m, 1H), 4.63 (s, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.45 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.31, 166.28, 165.85, 147.10, 144.45, 143.60, 142.14, 138.86, 138.69, 134.12, 130.10, 130.03, 129.80, 129.39, 129.21, 129.11, 128.49, 127.37, 123.94, 122.21, 121.41, 119.79, 114.84, 114.54, 73.47, 61.15, 60.90, 29.60, 14.38, 14.34. HRMS (ESI): calcd for C₃₅H₃₁N₂O₅ [M+H]⁺: 559.2233, found 559.2225.

2',3'-Di(thiophen-2-yl)spiro[benzo[b][1,4]oxazine-3,1'-inden]-2(4H)-one (4i): The title compound was prepared according to the general procedure. Brown oil (67.8 mg, 82%; eluent: 5%-10% ethyl acetate/hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 5.0 Hz, 1H), 7.39-7.19 (m, 7H), 7.15 (d, J = 7.3 Hz, 1H), 7.10 (t, J = 7.6 Hz, 2H), 6.99 (dd, J = 11.7, 6.3 Hz, 2H), 6.78 (d, J = 7.7 Hz, 1H), 4.29 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.45, 144.35, 143.34, 141.14, 138.53, 135.40, 134.79, 133.59, 131.40, 130.19, 129.00, 128.76, 127.92, 127.67, 127.47, 127.26, 126.95, 125.57, 121.90, 121.81, 120.64, 116.89, 115.77, 71.46. HRMS (ESI): calcd for

 $C_{24}H_{16}NO_2S_2 [M+H]^+: 414.0622$, found 414.0608.

2,3-Dibutyl-4'-methyl-1'H-spiro[indene-1,2'-quinoxalin]-3'(4'H)-one (4j): The title compound was prepared according to the general procedure. White solid (73.5 mg, 98%; eluent: 5%-15% ethyl acetate/hexane). Mp: 71-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 1H), 7.21 (d, *J* = 7.3 Hz, 1H), 7.06-6.92 (m, 5H), 6.67 (dd, *J* = 7.3, 1.5 Hz, 1H), 3.95 (s, 1H), 3.48 (s, 3H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.49 (m, 1H), 2.33 (m, 1H), 1.75-1.44 (m, 6H), 1.43-1.32 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 3H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.80, 146.82, 144.97, 144.07, 141.11, 134.81, 128.87, 128.80, 125.39, 123.60, 121.70, 119.49, 119.28, 114.49, 114.38, 72.83, 31.90, 30.74, 29.50, 26.37, 25.43, 23.47, 23.03, 14.13, 13.91. HRMS (ESI): calcd for C₂₅H₃₁N₂O [M+H]⁺: 375.2436, found 375.2435.

Dimethyl-4'-methyl-3'-oxo-3',4'-dihydro-1'*H***-spiro[indene-1,2'-quinoxaline]-2,3dicarboxylate (4k): The title compound was prepared according to the general procedure. White solid (73.4 mg, 97%; eluent: 5%-30% ethyl acetate/hexane). Mp: 92-94 °C. ¹H NMR (300 MHz, CDCl₃) \delta 7.52 (d,** *J* **= 7.5 Hz, 1H), 7.35 (t,** *J* **= 6.4 Hz, 1H), 7.27-7.16 (m, 2H), 7.03-6.84 (m, 3H), 6.62 (d,** *J* **= 7.4 Hz, 1H), 4.38 (s, 1H), 3.92 (s, 3H), 3.60 (s, 3H), 3.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 164.40, 164.25, 163.38, 147.45, 142.84, 140.60, 137.38, 132.82, 129.78, 129.73, 128.46, 123.86, 123.57, 123.00, 119.97, 114.77, 114.45, 72.13, 52.62, 52.35, 29.67. HRMS (ESI): calcd for C₂₁H₁₉N₂O₅ [M+H]⁺: 379.1294, found 379.1281.**

2,4'-Dimethyl-3-phenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4l): The title compound was prepared according to the general procedure. White solid (45.8 mg, 65%; eluent: 5%-10% ethyl acetate/hexane). Mp: 157-159 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.50 (d,** *J* **= 7.3 Hz, 2H), 7.39-7.26 (m, 5H), 7.10-7.03 (m, 2H), 6.98-6.83 (m, 3H), 6.61 (dd,** *J* **= 7.4, 1.4 Hz, 1H), 4.08 (s, 1H), 3.46 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.51, 146.72, 144.10, 143.51, 138.92, 134.77, 134.52, 129.51, 129.20, 128.77, 128.06, 127.41, 126.52, 123.55, 121.63, 119.95, 119.50, 114.58, 114.31, 73.32, 29.55, 12.06. HRMS (ESI): calcd for C₂₄H₂₁N₂O [M+H]⁺: 353.1654, found 353.1641.**

3,4'-Dimethyl-2-phenyl-1'*H***-spiro[indene-1,2'-quinoxalin]-3'(4'***H***)-one (4l'): The title compound was prepared according to the general procedure. White solid (23.8 mg, 34%; eluent: 5%-15% ethyl acetate/hexane). Mp: 169-171 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.54-7.48 (m, 4H), 7.47-7.38 (m, 1H), 7.25 (td,** *J* **= 7.5, 0.8 Hz, 1H), 7.18 (d,** *J* **= 7.4 Hz, 1H), 7.08 (d,** *J* **= 8.1 Hz, 2H), 7.03-6.95 (m, 3H), 6.74-6.71 (m, 1H), 4.08 (s, 1H), 3.52 (s, 3H), 2.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta 166.17, 146.39, 143.68, 142.91, 140.81, 134.70, 134.01, 129.07, 129.03, 128.97, 128.49, 127.72, 125.65, 123.73, 122.14, 120.33, 119.84, 114.76, 114.54, 72.31, 29.51, 11.35. HRMS (ESI): calcd for C₂₄H₂₁N₂O [M+H]⁺: 353.1654, found 353.1634.**

VI. Gram scale synthesis and synthetic transformations:

Gram-Scale: An oven dried 75 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with $[Cp*RhCl_2]_2$ (1 mol%), AgSbF₆ (6 mol%), **1a** (2.0 mmol) or **1h** (2.0 mmol), 1,2-diphenylethyne (1.1 equiv), PivOH (1 equiv), and CH₃CN (20 mL) under Argon, and was evacuated and refilled with Argon for three times. Then, the septum was replaced by a Teflon screwcap under Argon flow. The reaction mixture was stirred at 100 °C for 24 h. Upon completion, the reaction mixture was diluted with 20 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (50 mL). The filtrate was concentrated under reduced pressure. The residue was then purified by chromatography on silica gel to provide the corresponding product **3a** (0.7876 g, 95%) or **3h** (0.6721 g, 68%).

Procedure: An oven dried 35 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with **3h** (0.2 mmol), (4-

methoxyphenyl)boronic acid (0.4 mmol), Cs₂CO₃ (0.4 mmol), Pd(PPh₃)₄ (5 mol%) and DCE (2 mL) under Argon, and was evacuated and refilled with Argon for three times. Then, the septum was replaced by a Teflon screwcap under Argon flow. The reaction mixture was stirred at 80 °C for 24 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (30 mL). The filtrate was concentrated under reduced pressure. The residue was then purified by chromatography on silica gel to afford **4m** as white solid (93.9 mg, 90%, eluent: 5%-15% ethyl acetate/hexane). Mp: 241-243 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.37 (m, 10H), 7.29-7.25 (m, 1H), 7.21 (dd, *J* = 7.0, 3.7 Hz, 4H), 7.04 (dd, *J* = 7.4, 1.6 Hz, 1H), 6.97 (ddd, *J* = 12.9, 6.3, 4.3 Hz, 4H), 6.68 (dd, *J* = 7.1, 1.7 Hz, 1H), 4.33 (s, 1H), 3.86 (s, 3H), 3.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.40, 159.28, 145.33, 144.84, 143.83, 142.99, 142.31, 134.48, 134.40, 134.07, 133.77, 129.99, 129.49, 128.79, 128.73, 128.36, 127.97, 127.89, 127.42, 125.38, 123.78, 122.25, 120.00, 119.65, 114.77, 114.49, 114.23, 73.05, 55.39, 29.66. HRMS (ESI): calcd for C₃₆H₂₉N₂O₂ [M+H]⁺: 521.2229, found 521.2227.

Procedure: An oven dried 35 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with **3h** (0.2 mmol) and was evacuated and refilled with Argon for three times, and dry toluene (2 mL) was added. Then, the reaction mixture was cooled to -78 °C and DIBAL-H (2 mL, 1M in Hexane) was added. The reaction mixture was stirred at 0 °C for 4 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (30 mL). The filtrate was concentrated under reduced pressure. The residue was then purified by chromatography on silica gel to afford **4n** as white solid (83.4 mg, 87%). Mp: 221-223 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.31 (m, 8H), 7.31-7.08 (m, 5H), 6.84 (t, *J* = 7.5 Hz, 1H), 6.77-6.54 (m, 3H), 3.99 (s, 1H), 3.51 (d, *J* = 11.2 Hz, 1H), 2.93 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 149.22, 144.98, 144.02, 140.60, 134.86, 134.42, 134.14, 132.25, 129.35, 129.28, 128.80, 127.99, 127.94, 127.72, 124.93, 123.55, 121.85, 119.18, 118.50, 114.54, 111.25, 65.48, 54.76, 38.79. HRMS (ESI): calcd for C₂₉H₂₄BrN₂ [M+H]⁺: 479.1117, found 479.1129.

VII. Mechanistic studies

H/D exchange experiment

Procedure: An oven dried 35 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with $[Cp*RhCl_2]_2$ (1 mol%), AgSbF₆ (6 mol%), **1a** (0.2 mmol), CD₃OD (10 equiv), PivOH (1 equiv), and CH₃CN (2 mL) under Argon, and was evacuated and refilled with Argon for three times. Then, the septum was replaced by a Teflon screwcap under Argon flow. The reaction mixture was stirred at 100 °C for 2 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (30 mL). The filtrate was concentrated under reduced pressure. The crude ¹H NMR showed 34% D was incorporated into the two *ortho* positions of **1a**.

However, we did not observe D incorporation into **1a** in the absence of PivOH indicating PivOH would accerate C-H cyclorhodation.

Competition experiment between 3-phenylquinoxalin-2(1H)-ones

Procedure: An oven dried 35 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with $[Cp*RhCl_2]_2$ (1 mol%), AgSbF₆ (6 mol%), **1b** (0.2 mmol), **1i** (0.2 mmol), **2a** (0.2 mmol), PivOH (1 equiv), and CH₃CN (2 mL) under Argon, and was evacuated and refilled with Argon for three times. Then, the septum was replaced by a Teflon screwcap under Argon flow. The reaction mixture was stirred at 100 °C for 24 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (30 mL). The filtrate was concentrated under reduced pressure and the residue was then purified by chromatography on silica gel to afford amixture of **3b** and **3i** (19%) using the 1,3,5-trimethoxybenzene as the internal standard.

Competition experiment between alkynes

Procedure: An oven dried 35 mL Schlenk tube equipped with a stir bar was fitted with a rubber septum and cooled under vacuum. After cooling, the tube was charged with $[Cp*RhCl_2]_2$ (1 mol%), AgSbF₆ (6 mol%), **1a** (0.2 mmol), **2c** (0.2 mmol), **2d** (0.2 mmol), PivOH (1 equiv), and CH₃CN (2 mL) under Argon, and was evacuated and refilled with Argon for three times. Then, the septum was replaced by a Teflon screwcap under Argon flow. The reaction mixture was stirred at 100 °C for 24 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (30 mL). The filtrate was concentrated under reduced pressure and the residue was then purified by chromatography on silica gel to afford amixture of **4c** and **4d** (29%) using the 1,3,5-trimethoxybenzene as the internal standard.

VIII. X-ray crystallographic analysis of 3g (CCDC: 1993099)

Identification code	3g
Empirical formula	C ₂₉ H ₂₁ ClN ₂ O
Formula Mass	448.93
Temperature / K	150(2)
Wavelength / Å	0.71073
Crystal system	orthorhombic
Space group	<i>Pca</i> 2 ₁
<i>a</i> / Å	23.099(7)
b / Å	10.570(3)
<i>c</i> / Å	9.121(2)
V / Å ³	2226.8
Ζ	4
μ / mm ⁻¹	0.197
Flack parameter	0.03(9)
<i>F</i> (000)	936.0
Crystal size / mm	0.25 x 0.1 x 0.08
Theta range for data collection / $^{\circ}$	2.612 to 26.372
Index ranges	-28<= <i>h</i> <=28, -13<= <i>k</i> <=13, -11<= <i>l</i> <=11
$ ho_{ m calcd}$ /g cm ⁻³	1.339
Measured refls.	17396
Independent refls.	4372
Completeness to theta = 25.242°	99.5%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4372 / 1 / 304
R _{int}	0.0570
[a] <i>R</i> indices $[I > 2\sigma(I)] R_1, wR2$	0.0372, 0.0811
R indices (all data) R_1 , $wR2$	0.0540, 0.0918
GOF	1.026
Largest diff. peak and hole / e.Å-3	0.125 and -0.198
CCDC reference numbers	1993099

IX. References

- [1] Xue, Z.-Y.; Jiang, Y.; Peng, X.-Z.; Yuan, W.-C.; Zhang, X.-M., Adv. Synth. Catal. 2010, 352, 2132-2136.
- [2] Núñez-Rico, J. L.; Vidal-Ferran, A., Org. Lett. 2013, 15, 2066-2069.
- [3] Carrër, A.; Brion, J.-D.; Messaoudi, S.; Alami, M., Org. Lett. 2013, 15, 5606-5609.
- [4] Chuentragoola, P.; Vongnamb, K.; Rashatasakhona, P.; Sukwattanasinitta, M.; Wacharasindhu, S. *Tetrahedron* 2011, 67, 8177-8182.
- [5] Leadbeater, N. E.; Tominack, B. J., Tetrahedron Lett 2003, 44, 8653-8656.

X. ¹H, ¹³C and ¹⁹F NMR spectra

¹³C NMR spectra of 3a (CDCl₃)

¹³C NMR spectra of 3b (CDCl₃)

¹³C NMR spectra of 3c (CDCl₃)

¹³C NMR spectra of 3d (CDCl₃)

¹³C NMR spectra of 3f (CDCl₃)

¹³C NMR spectra of 3h (CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectra of 3i (CDCl₃)

¹⁰ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ¹⁹F NMR spectra of 3i (CDCl₃)

¹H NMR spectra of 30 (CDCl₃)

¹⁹F NMR spectra of 30 (CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectra of 3p (CDCl₃)

¹³C NMR spectra of 4a (CDCl₃)

¹³C NMR spectra of 4b (CDCl₃)

¹³C NMR spectra of 4c (CDCl₃)

¹³C NMR spectra of 4d (CDCl₃)

¹H NMR spectra of 4e (CDCl₃)

¹H NMR spectra of 4j (CDCl₃)

¹H NMR spectra of 4l' (CDCl₃)

¹³C NMR spectra of 4n (CDCl₃)