Cascade Annulation Reaction (CAR): Highly Diastereoselective Synthesis of Pyranopyrazole Scaffolds

Supporting Information

Contents

General Consideration	2
Typical experimental procedure for the synthesis of compounds (3a-w)	2
Typical experimental procedure for the synthesis of compounds (4a-h)	12
Typical experimental procedure for the synthesis of compounds (5a-b)	15
Crystal data and structure refinement for compound 3a	17
Crystal data and structure refinement for compound 4a	18
1H, & 13C NMR Spectra for the Compounds 3a-w, 3aa, 4a-h & 5a-b	19
NOESY Spectrum of Racemic Compound 3a	53
HPLC of Compound 3a and 3aa	54

General Consideration

Commercial reagents were used without further purification. IR spectra were recorded on a Perkin Elmer-FTIR spectrometer using solid samples as KBr plates. For compounds ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra were recorded in deuterochloroform (CDCl₃) on a Bruker 400 MHz spectrometer using tetramethylsilane (TMS, $\delta = 0$) as an internal standard at room temperature. Mass spectra were recorded on Agilent 1200 LC/MS-6110 mass spectrometer. Aldehydes, acetophenone, KOBu¹ and H₂O₂ (30%) were purchased from Sigma Aldrich. Reactions were monitored by thin layer chromatography (TLC) on Silica gel 60 F254 aluminium plates. TLC plates were visualized using ultraviolet (UV) light at 254 nm. Column chromatography was performed with silica gel 60 Å (100 – 200 mesh) from Aldrich, using the stated mixture of solvents. Compounds spectral data and copy of ¹H and ¹³C NMR spectra of all compounds **3a-w**, **4a-h**, **5a-b and 3aa** are listed below (pages 2-52). Based on literature procedure, racemic chalcone epoxide were synthesized from substituted benzaldehyde and substituted acetophenone as starting materials which were comercially obtained and used without further purification.

Typical experimental procedure for the synthesis of compounds (3a-w)

A mixture of chalcone epoxide (1, 1mmol), pyrazolone (2, 1 mmol), and KOBu^t (1 equiv.) in absolute ethanol (5 mL) was placed in a single neck round bottom flask and stirred at room temperature for 12 h. The reaction was monitored contineously by TLC. After completion of the reaction, the reaction mixture was washed with ethylacetate and water for three times. Then the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. The purification was carried out by 12% (ethylacetate / hexane) mixture to afford the product **3** as a white colour solid in very good yield.

Analytical Data of the Products

3-Methyl-1,4,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3a)

Yield : 79%; white solid; M.P. = 154 - 159 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 – 7.18 (m, 15H), 5.28 (d, *J* = 9.9 Hz, 1H), 4.12 (d, *J* = 9.9 Hz, 1H), 3.47(s, 1H), 2.17(s, 1H), 1.67(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.20, 147.41, 142.39, 138.35,

136.69, 129.23, 129.18, 128.77, 128.43, 128.01, 127.59, 126.22, 125.94, 120.45, 102.42, 81.70, 71.57, 13.47. IR (KBr) : 3504, 3366, 3036, 1599, 1517, 1447, 1070; HRMS (ESI-TOF) calcd for C₂₅H₂₂N₂O₃ ([M+H]⁺): 399.1709, found: 399.1705.

4-(4-Bromophenyl)-3-methyl-1,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3b)

Yield : 61%; white solid; M.P. = 135-138 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, 2H), 7.47 – 7.21 (m, 12H), 5.24 (d, *J* = 9.9 Hz, 1H), 4.04 (d, *J* = 3.9 Hz, 1H), 3.54 (s, 1H), 2.40 (s, 1H), 1.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.15, 147.17, 141.72, 138.16, 136.41, 131.48, 129.33, 129.21, 128.81, 128.14, 127.97, 126.09, 121.61, 120.45, 101.95, 81.75, 71.31, 13.58. IR (KBr) : 3504, 3394, 3039, 1594, 1522, 1493, 1081; HRMS (ESI-TOF) calcd for C₂₅H₂₁BrN₂O₃ ([M+H]⁺): 477.0814, found: 477.0815.

6-(4-Benzyloxy)phenyl)-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3c)

Yield : 64%; white solid; M.P. = 122-128 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.69 (m, 2H), 7.48 – 7.01 (m, 17H), 5.26 (d, *J* = 9.9 Hz, 1H), 5.07 (s, 2H), 4.11 (d, *J* = 9.7 Hz, 1H), 3.46 (s, 1H), 2.29 (s, 1H), 1.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.08, 151.09, 147.38, 142.40, 138.33, 138.17, 136.78, 129.89, 129.18, 128.75, 128.42, 128.22, 127.69, 127.58, 126.21, 125.92, 120.61, 120.44, 115.53, 114.64, 102.41, 81.61, 71.57, 70.28, 13.47. IR (KBr) : 3505, 3371, 3038, 1600, 1518, 1461, 1069; HRMS (ESI-TOF) calcd for C₃₂H₂₈N₂O₄ ([M+H]⁺): 505.2128, found: 505.2133.

6-(4-Ethylphenyl)-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c]pyrazole-4,5diol (3d)

Yield : 62%; white solid; M.P. = 149-154 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.68 (m, 2H), 7.55 – 7.13 (m, 12H), 5.28 (d, *J* = 9.8 Hz, 1H), 4.13 (d, *J* = 9.9 Hz, 1H), 3.43 (s, 1H), 2.68 (q, *J* = 7.6 Hz, 2H), 2.22 (s, 1H), 1.67 (s, 3H), 1.25 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.28, 147.39, 145.49, 142.50, 138.40, 133.81, 129.15, 128.41, 128.32, 128.01, 127.55, 126.22, 125.86, 120.44, 102.43, 81.62, 71.61, 28.76, 15.54, 13.48. IR (KBr) : 3504, 3348, 3059, 1596, 1520, 1497, 1096; HRMS (ESI-TOF) calcd for C₂₇H₂₆N₂O₃ ([M+H]⁺): 427.2021, found: 427.2009.

4-(4-Chlorophenyl)-6-(4-isopropylphenyl)-3-methyl-1-phenyl-1,4,5,6 tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3e)

Yield : 65%; white solid; M.P. = 154-160 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.74 – 7.20 (m, 12H), 5.23 (d, *J* = 9.8 Hz, 1H), 4.03 (d, *J* = 9.8 Hz, 1H), 2.92 (m, 1H), 2.47 (s, 1H), 1.66 (s, 3H), 1.36 (s, 1H), 1.25 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.20, 147.18, 141.27, 138.17, 133.67, 129.19, 129.03, 128.78, 128.47, 127.90, 127.77, 126.92, 126.80, 126.03, 120.48, 102.01, 81.65, 71.25, 34.04, 24.06, 24.01, 23.85, 13.53. IR (KBr) : 3504, 3388, 3059, 1594, 1519, 1496, 1183; HRMS (ESI-TOF) calcd for C₂₈H₂₇ClN₂O₃ ([M+H]⁺): 475.1789, found: 475.1791.

6-Mesityl-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3f)

Yield : 78%; white solid; M.P. = 139-143 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.67 (m, 2H), 7.48 (d, *J* = 7.7 Hz, 2H), 7.40 – 6.87 (m, 8H), 5.89 (d, *J* = 10.4 Hz, 1H), 4.56 (d, *J* = 9.8 Hz, 1H), 3.54 (s, 1H), 2.49 (s, 3H), 2.40 (s, 3H), 2.28 (s, 3H), 2.27 (s, 1H), 1.64 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.09, 147.47, 142.87,

138.72, 138.58, 137.50, 131.43, 129.49, 129.12, 128.86, 128.45, 127.51, 126.13, 125.81, 120.38, 102.26, 78.10, 74.86, 71.74, 21.34, 21.11, 21.02, 13.41. IR (KBr) : 3457, 3252, 3025, 1598, 1519, 1446, 1070; HRMS (ESI-TOF) calcd for $C_{28}H_{28}N_2O_3$ ([M+H]⁺): 441.2179, found: 441.2163.

6-(Benzo[d][1,3]dioxol-5-yl)-1-(4-chlorophenyl)-3-methyl-4-phenyl-1,4,5,6tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3g)

Yield : 60%; white solid; M.P. = 134-138 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.9 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.37 (d, *J* = 6.7 Hz, 2H), 7.33 (d, *J* = 5.6 Hz, 2H), 7.31 (d, *J* = 2.2 Hz, 1H), 6.96 – 6.89 (m, 2H), 6.83 (d, *J* = 8.0 Hz, 1H), 5.99 (s, 2H), 5.18 (d, *J* = 9.9 Hz, 1H), 4.07 (d, *J* = 9.9 Hz, 1H), 3.50 (s, 1H), 2.36 (s, 1H), 1.63 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.09, 148.49, 148.17, 147.74, 142.20, 136.81, 131.22, 130.00, 129.26, 128.46, 127.65, 126.13, 122.25, 121.40, 108.48, 107.91, 102.57, 101.53, 81.76, 71.47, 13.43. IR (KBr) : 3504, 3280, 2916, 1599, 1497, 1445, 1094; HRMS (ESI-TOF) calcd for C₂₆H₂₁ClN₂O₅ ([M+H]⁺): 477.1218, found: 477.1211.

6-(Benzo[d][1,3]dioxol-5-yl)-4-(4-chlorophenyl)-3-methyl-1-phenyl-1,4,5,6tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3h)

Yield : 80%; white solid; M.P. = 140-141 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.64 (m, 2H), 7.42 – 7.34 (m, 4H), 7.30 – 7.17 (m, 3H), 6.94 – 6.82 (m, 3H), 5.97 (s, 2H), 5.12 (d, 1H), 3.99 (d, *J* = 9.9 Hz, 1H), 3.64 (s, 1H), 2.51 (s, 1H), 1.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.08, 148.47, 148.15, 147.18, 141.19, 138.13, 133.42, 130.04, 129.22, 128.52, 127.76, 126.10, 122.21, 120.46, 108.44, 107.97, 102.02, 101.51, 81.75, 71.22, 13.52. IR (KBr) : 3504, 3371, 3039, 1601, 1557, 1451, 1069; HRMS (ESI-TOF) calcd for C₂₆H₂₁ClN₂O₅ ([M+H]⁺): 477.1218, found: 477.1220.

6-(Benzo[d][1,3]dioxol-5-yl)-4-(4-bromophenyl)-3-methyl-1-phenyl-1,4,5,6tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3i)

Yield : 81%; white solid; M.P. = 138-142 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.63 (m, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.28 – 6.81 (m, 8H), 5.98 (s, 2H), 5.11 (d, *J* = 9.9 Hz, 1H), 3.97 (d, *J* = 9.9 Hz, 1H), 3.74 (s, 1H), 2.61 (s, 1H), 1.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.06, 148.43, 148.10, 147.18, 141.75, 138.05, 131.44, 130.03, 129.22, 128.11, 126.12, 122.20, 121.55, 120.46, 108.42, 107.95, 101.92, 101.50, 81.72, 71.21, 13.51. IR (KBr) : 3504, 3431, 3072, 1596, 1496, 1446, 1095; HRMS (ESI-TOF) calcd for C₂₆H₂₁BrN₂O₅ ([M+H]⁺): 521.0712, found: 521.0695.

6-(Benzo[d][1,3]dioxol-5-yl)-4-(4-bromophenyl)-1-(4-chlorophenyl)-3-methyl-1,4,5,6tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3j)

Yield : 60%; white solid; M.P. = 140-145 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.9 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.33 – 6.84 (m, 7H), 5.99 (s, 2H), 5.17 (d, *J* = 10.0 Hz, 1H), 4.02 (d, *J* = 9.9 Hz, 1H), 3.51 (s, 1H), 2.36 (s, 1H), 1.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.09, 148.65, 148.29, 147.49, 141.57, 136.73, 131.56, 131.41, 129.69, 129.32, 128.08, 122.26, 121.75, 121.45, 108.57, 107.87, 102.15, 101.61, 81.84, 71.34, 13.58. IR (KBr) : 3504, 3432, 3075, 1598, 1496, 1446, 1093; HRMS (ESI-TOF) calcd for C₂₆H₂₀BrClN₂O₅ ([M+H]⁺): 555.0322, found: 555.0291.

6-(Benzo[d][1,3]dioxol-5-yl)-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3c]pyrazole-4,5-diol (3k)

Yield : 78%; white solid; M.P. = 121-125 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.68 (m, 2H), 7.49 – 7.44 (m, 2H), 7.36 – 6.82 (m, 9H), 5.97 (s, 2H), 5.18 (d, *J* = 9.8 Hz, 1H), 4.07 (d, *J* = 9.9 Hz, 1H), 3.48 (s, 1H), 2.32 (s, 1H), 1.64 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 151.10, 148.41, 148.12, 147.39, 142.35, 138.26, 130.23, 129.19, 128.43, 127.59, 126.18, 125.95, 122.23, 120.43, 108.42, 108.00, 102.38, 101.48, 81.65, 71.51, 13.45; IR (KBr) : 3504, 3361, 3047, 1597, 1501, 1471, 1090; HRMS (ESI-TOF) calcd for C₂₆H₂₂N₂O₅ ([M+H]⁺): 442.1569, found: 442.1768.

6-(4-Isopropylphenyl)-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3l)

Yield : 64%; white solid; M.P. = 153-154 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.36 – 7.20 (m, 10H), 5.25 (d, *J* = 9.8 Hz, 1H), 4.09 (d, *J* = 9.8 Hz, 1H), 3.61 (s, 1H), 2.92 (q, *J* = 7.1 Hz, 1H), 2.32 (s, 1H), 1.65 (s, 3H), 1.26 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.15, 149.87, 149.43, 147.33, 143.87, 142.39, 141.29, 138.22, 134.71, 133.86, 129.06, 128.27, 127.83, 126.74, 126.09, 125.79, 120.36, 118.64, 102.27, 81.47, 71.38, 33.94, 23.99, 13.38; IR (KBr) : 3504, 3368, 3061, 1596, 1520, 1452, 1092; HRMS (ESI-TOF) calcd for C₂₈H₂₈N₂O₃ ([M+H]⁺): 441.2179, found: 441.2176.

4-(4-Bromophenyl)-6-(4-ethylphenyl)-3-methyl-1-phenyl-1,4,5,6-tetrahydropyrano[2,3c] pyrazole-4,5-diol (3m)

Yield : 66%; white solid; M.P. = 141-143 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.42 – 7.30 (m, 6H), 7.27 – 7.25 (m, 2H), 7.20 (t, 1H), 5.23 (d, *J* = 9.9 Hz, 1H), 4.05 (d, *J* = 9.9 Hz, 1H), 2.68 (q, *J* = 7.6 Hz, 2H), 2.18 (s, 1H), 1.68 (s, 3H), 1.25 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.11, 147.05, 145.49, 141.71, 138.08, 133.41, 131.34, 129.08, 128.26, 128.02, 127.85, 125.92, 121.45, 120.33, 101.84, 81.56, 71.21, 28.65, 15.45, 13.46; IR (KBr) : 3499, 3359, 3039, 1598, 1521, 1455, 1039; HRMS (ESI-TOF) calcd for C₂₇H₂₅BrN₂O₃ ([M+H] ⁺): 505.1128, found: 505.1134.

4-(4-Chlorophenyl)-3-methyl-1,6-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5diol (3n)

Yield : 62%; white solid; M.P. = 142-145 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 – 7.49 (m, 4H), 7.46 – 7.39 (m, 5H), 7.39 – 7.30 (m, 4H), 7.25 – 7.16 (m, 1H), 5.26 (d, *J* = 9.9 Hz, 1H), 4.07 (d, *J* = 2.9 Hz, 1H), 3.45 (s, 1H), 2.30 (s, 1H), 1.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.17, 147.16, 141.16, 138.24, 136.42, 133.50, 129.37, 129.22, 128.86, 128.57, 127.98, 127.79, 126.08, 120.47, 102.05, 81.79,71.34, 13.58. IR (KBr) : 3501, 3369, 3045, 1602, 1535, 1470, 1055; HRMS (ESI-TOF) calcd for C₂₅H₂₁ClN₂O₃ ([M+H]⁺): 433.1316, found: 433.1320.

3-Methyl-6-(naphthalen-2-yl)-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (30)

Yield : 60%; white solid; M.P. = 151-153 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, *J* = 8.2 Hz, 1H), 7.97 – 7.86 (m, 2H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.76 – 7.68 (m, 2H), 7.57 – 7.50 (m, 5H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.33 – 7.28 (m, 3H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.18 (d, *J* = 9.6 Hz, 1H), 4.51 (d, *J* = 7.9 Hz, 1H), 3.51 (s, 1H), 2.17 (s, 1H), 1.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.29, 147.42, 142.45, 138.37, 133.98, 129.92, 129.15, 128.48, 127.63, 126.75, 126.23, 126.11, 125.87, 125.44, 120.36, 102.59, 71.98, 13.51. IR (KBr) : 3501, 3366, 3061, 1597, 1514, 1454, 1096; HRMS (ESI-TOF) calcd for C₂₉H₂₄N₂O₃ ([M+H]⁺): 449.1866, found: 449.1876.

4,6-Bis(4-chlorophenyl)-3-methyl-1-phenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3p)

Yield : 71%; white solid; M.P. = 143-146 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.39 (m, 3H), 7.36 (d, *J* = 3.8 Hz, 6H), 7.33 – 7.27 (m, 2H), 7.26 – 7.19 (m, 1H), 5.15 (d, *J* = 9.9 Hz, 1H), 3.96 (d, *J* = 9.6 Hz, 1H), 3.72 (s, 1H), 2.68 (s, 1H), 1.64 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.93, 147.24, 140.89, 138.01, 135.10, 135.03, 133.51, 129.28, 129.27, 128.88, 128.56, 127.73, 126.23, 120.42, 102.02, 81.11, 71.09, 13.53. IR (KBr) : 3504, 3317, 3083, 1597, 1519, 1451, 1091; HRMS (ESI-TOF) calcd for C₂₅H₂₀Cl₂N₂O₃ ([M+H]⁺): 467.0930, found: 467.0916.

6-(4-Methoxyphenyl)-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3q)

Yield : 72%; white solid; M.P. = 119-121 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.66 (m, 2H), 7.50 – 7.40 (m, 4H), 7.36 – 6.94 (m, 8H), 5.25 (d, *J* = 9.9 Hz, 1H), 4.13 (d, *J* = 9.9 Hz, 1H), 3.82 (s, 3H), 3.44 (s, 1H), 2.28 (s, 1H), 1.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.32, 151.29, 147.38, 142.51, 138.38, 129.39, 129.15, 128.58, 128.42, 128.22, 127.56, 126.21, 125.86, 120.59, 120.40, 114.24, 113.99, 102.44, 81.44, 71.61, 55.48, 13.48. IR (KBr) : 3504, 3423, 3076, 1598, 1517, 1450, 1075; HRMS (ESI-TOF) calcd for C₂₆H₂₄N₂O₄ ([M+H]⁺): 429.1814, found: 429.1822.

3-Methyl-6-(4-nitrophenyl)-3-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3r)

Yield : 60%; white solid; M.P. = 106-108 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.73 – 7.63 (m, 4H), 7.49 – 7.44 (m, 2H), 7.41 – 7.22 (m, 6H), 5.31 (d, *J* = 9.8 Hz, 1H), 4.03 (d, *J* = 9.9 Hz, 1H), 3.66 (s, 1H), 2.83 (s, 1H), 1.65 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.55, 148.21, 147.48, 144.07, 141.64, 138.05, 129.30, 128.80, 128.58, 127.87, 126.31, 126.18, 123.64, 120.47, 102.44, 80.69, 71.37, 13.49. IR (KBr) : 3504, 3432, 3072, 1598, 1520, 1450, 1109; HRMS (ESI-TOF) calcd for C₂₅H₂₁N₃O₅ ([M+H]⁺): 444.1560, found: 444.1563.

6-(3-Bromophenyl)-4-(4-chlorophenyl-3-methyl-1-phenyl-1,4,5,6-tetrahydropyrano[2,3c] pyrazole-4,5-diol (3s)

Yield : 66%; white solid; M.P. = 151-157 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.63 – 7.26 (m, 10H), 7.23 (d, *J* = 7.4 Hz, 1H), 5.10 (d, *J* = 9.9 Hz, 1H), 3.96 (d, *J* = 9.9 Hz, 1H), 3.74 (s, 1H), 2.67 (s, 1H), 1.64 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.86, 147.26, 140.81, 138.83, 137.99, 133.54, 132.28, 130.99, 130.21, 129.31, 128.58, 127.74, 126.65, 126.32, 122.71, 120.49, 102.01, 81.08, 71.06, 13.56. IR (KBr) : 3504, 3388, 3060, 1596, 1519, 1493, 1123; HRMS (ESI-TOF) calcd for C₂₅H₂₀BrClN₂O₃ ([M+H]⁺): 511.0498, found: 511.0415.

4-(4-Methoxyphenyl)-3-methyl-1,6-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3t)

Yield : 70%; white solid; M.P. = 113-117 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.48 (m, 4H), 7.45 – 7.13 (m, 8H), 6.87 (d, *J* = 8.6 Hz, 2H), 5.26 (d, *J* = 10.0 Hz, 1H), 4.06 (d, *J* = 9.9 Hz, 1H), 3.79 (s, 3H), 3.43 (s, 1H), 2.42 (s, 1H), 1.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.97, 151.10, 147.45, 138.31, 136.74, 134.27, 129.19, 129.16, 128.74, 127.98, 127.38, 125.90, 120.41, 113.74, 102.45, 81.73, 71.24, 55.40, 13.54. IR (KBr) : 3504, 3400, 3036, 1600, 1519, 1453, 1087; HRMS (ESI-TOF) calcd for C₂₆H₂₄N₂O₄ ([M+H]⁺): 429.1814, found: 429.1809.

4-(4-Chlorophenyl)-3-methyl-1-phenyl-6-(p-tolyl)-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3u)

Yield : 67%; white solid; M.P. = 159-166 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.21 (m, 11H), 5.22 (d, *J* = 9.8 Hz, 1H), 4.05 (d, *J* = 10.0 Hz, 1H), 3.56 (s, 1H), 2.38 (s, 3H), 2.31 (s, 1H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.14, 147.06, 141.17, 139.24, 138.13, 133.31, 133.24, 129.08, 128.42, 120.31, 101.97, 81.59, 71.19, 21.29. IR (KBr) : 3504, 3360, 3001, 1617, 1519, 1450, 1067; HRMS (ESI-TOF) calcd for C₂₆H₂₃ClN₂O₃ ([M+H]⁺): 447.1476, found: 447.1453.

3-Methyl-1,4-diphenyl-6-(p-tolyl)-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5-diol (3v)

Yield : 75%; white solid; M.P. = 159-166 °C; Reaction time: 12 h; ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.45 (m, 4H), 7.40 – 7.33 (m, 6H), 7.30 – 7.17 (m, 4H), 5.25 (d, *J* = 9.9 Hz, 1H), 4.12 (d, *J* = 10.0 Hz, 1H), 3.46 (s, 1H), 2.38 (s, 3H), 1.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.16, 147.29, 142.37, 139.10, 138.26, 133.48, 129.39, 129.04, 128.29, 127.87, 127.43, 126.10, 125.75, 120.28, 102.32, 81.50, 71.45, 21.29, 13.35. IR (KBr) : 3504, 3401, 3081, 1597, 1520, 1496, 1096; HRMS (ESI-TOF) calcd for C₂₆H₂₄N₂O₃ ([M+H]⁺): 413.1866, found: 413.1834.

6-(4-Chlorophenyl)-3-methyl-1,4-diphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazole-4,5diol (3w)

Yield : 74%; white solid; M.P. = 159-166 °C; Reaction time: 12 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.64 (m, 2H), 7.41 (d, *J* = 7.0 Hz, 2H), 7.39 – 7.34 (m, 3H), 7.33 – 7.22 (m, 7H), 5.10 (d, *J* = 9.9 Hz, 1H), 3.98 (d, *J* = 9.9 Hz, 1H), 3.80 (s, 1H), 2.82 (s, 1H), 1.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.89, 147.51, 142.14, 138.05, 135.35, 134.76, 129.26, 129.19, 128.72, 128.37, 127.56, 126.15, 126.07, 120.38, 102.35, 81.00, 71.21, 13.37; IR (KBr) : 3503, 3399, 3079, 1596, 1521, 1499, 1097; HRMS (ESI-TOF) calcd for C₂₅H₂₁ClN₂O₃ ([M+H]⁺): 433.1319, found: 433.1336.

(*4S*,5*R*,6*R*)-3-Methyl-1,4,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-c]pyrazole-4,5-diol (3aa)

Yield : 75%; white solid; M.P. = 154-159 °C; Reaction time: 12 h; HPLC (Daicel Chiralpak AD-H, hexane/2-propanol = 90:10, flow rate 0.5 mL/min) $t_{minor} = 14.0$ min, $t_{major} = 20.4$ min, 56% de; $[\alpha]_D^{25} = 35.023$ (c =1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.3 Hz, 4H), 7.36 – 7.25 (m, 7H), 7.22 (d, J = 7.1 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 5.20 (dd, J = 10.0, 7.4 Hz, 1H), 4.04 (dd, J = 10.0, 6.4 Hz, 1H), 3.38 (d, J = 4.4 Hz, 1H), 2.17 (d, J = 6.3 Hz, 1H), 1.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.18, 147.40, 142.35, 138.34, 136.65, 129.24, 129.18, 128.77, 128.43, 127.99, 127.59, 126.20, 125.92, 120.42, 102.39, 81.68, 71.55, 13.51.

Typical experimental procedure for the synthesis of compounds (4a-h)

A mixture of 3-methyl-1,4,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-c]pyrazole-4,5-diol (**3**, 1mmol), aq. HBr 47% (0.2 eq.) and H_2O_2 30% (3 eq.) in acetonitrile (5 mL) was placed in a round bottom flask and stirred at reflux for 2 h. After completion of the reaction, the crude reaction mixture was cooled to room temperature and washed with ethylacetate and water for three times. Then the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The purification was carried out by 5% (ethylacetate / hexane) mixture to afford the product **4** as a reddish semi solid in good yield.

(Z)-3-(3-Methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)-1,3diphenylpropane-1,2-dione (4a)

Yield : 71%; Reddish semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, *J* = 7.8 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.59 – 7.49 (m, 8H), 7.34 – 7.16 (m, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.07, 186.51, 163.15, 158.04, 148.21, 137.51, 134.32, 132.57, 132.30, 131.36, 130.74, 129.39, 128.99, 128.87, 128.65, 128.57, 125.48, 118.84, 16.58; IR (KBr) : 3060, 1710, 1676, 1622, 1496; HRMS (ESI-TOF) calcd for C₂₅H₁₈N₂O₃ ([M+H]⁺): 395.1396, found: 395.1385.

(Z)-3-(4-Chlorophenyl)-3-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)-1-(p-tolyl) propane-1,2-dione (4b)

Yield : 78%; Reddish semi solid; Reaction time: 2 h; ;¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.3 Hz, 2H), 7.79 – 7.71 (m, 2H), 7.56 – 7.50 (m, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.36 – 7.31 (m, 4H), 7.19 – 7.09 (m, 1H), 2.45 (s, 3H), 1.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.01, 186.16, 162.92, 156.81, 147.80, 145.69, 137.41, 137.16, 131.46, 131.34, 130.75, 130.19, 130.04, 129.94, 129.84, 129.52, 129.50, 129.40, 129.22, 128.98, 125.52, 118.80, 22.10, 16.72. IR (KBr) : 3059, 1725, 1656, 1642, 1486; HRMS (ESI-TOF) calcd for C₂₆H₁₉ClN₂O₃ ([M+H]⁺) : 443.1162, found: 443.1190.

(Z)-1-(Benzo[d][1,3] dioxol-5-yl)-3-(4-bromophenyl)-3-(3-methyl-5-oxo-1-phenyl-1,5dihydro-4H-pyrazol-4-ylidene)-propane-1,2-dione (4c)

Yield : 82%; Reddish semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 – 7.72 (m, 3H), 7.70 – 7.59 (m, 3H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.38 – 7.29 (m, 2H), 7.19 – 7.11 (m, 1H), 6.94 (d, *J* = 8.3 Hz, 1H), 6.08 (s, 2H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.94, 184.61, 162.92, 157.03, 153.28, 148.06, 147.84, 137.42, 132.19, 131.25, 130.20, 129.37, 129.02, 128.92, 126.81, 125.57, 125.50, 118.87, 110.49, 108.49, 102.14, 16.72. IR (KBr) : 3069, 1700, 1680, 1600, 1499; HRMS (ESI-TOF) calcd for C₂₆H₁₇BrN₂O₅ ([M+H]⁺): 517.0400, found: 517.0397.

(Z)-1-(4-Isopropylphenyl)-3-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4ylidene)-3-phenylpropane-1,2-dione (4d)

Yield : 80%; Orange semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (d, *J* = 8.4 Hz, 2H), 7.82 – 7.72 (m, 2H), 7.58 – 7.49 (m, 5H), 7.42 – 7.30 (m, 4H), 7.20 – 7.10 (m, 1H), 3.13 – 2.80 (m, 1H), 1.89 (s, 3H), 1.30 (d, *J* = 7.0 Hz, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 193.27, 186.20, 163.15, 158.44, 156.08, 148.21, 137.56, 132.41, 130.69, 130.38, 129.26, 128.98, 128.84, 128.65, 126.77, 118.93, 34.62, 23.71, 16.56. IR (KBr) : 3065, 1684, 1660, 1598, 1497; HRMS (ESI-TOF) calcd for C₂₈H₂₄N₂O₃ ([M+H] ⁺): 437.1866, found: 437.1853.

(Z)-3-(4-Chlorophenyl)-1-(4-isopropylphenyl)-3-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)-1,3-diphenylpropane-1,2-dione (4e)

Yield : 75%; Reddish semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.3 Hz, 2H), 7.80 – 7.73 (m, 2H), 7.57 – 7.44 (m, 4H), 7.41 – 7.31 (m, 4H), 7.15 (t, *J* = 7.4 Hz, 1H), 3.00 (m, *J* = 7.0 Hz, 1H), 1.91 (s, 3H), 1.30 (d, *J* = 7.0 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.04, 186.20, 162.95, 156.88, 156.24, 147.80, 137.42, 137.17, 131.62, 130.74, 130.15, 130.04, 129.50, 129.22, 129.00, 126.85, 125.54, 118.87, 34.61, 23.70, 16.70; IR (KBr) : 3041, 1681, 1633, 1598, 1495; HRMS (ESI-TOF) calcd for C₂₈H₂₃ClN₂O₃ ([M+H]⁺): 471.1476, found: 471.1474.

(Z)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)-3-phenylpropane-1,2-dione (4f)

Yield : 72%; Brown semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (dd, J = 8.2, 1.7 Hz, 1H), 7.80 – 7.69 (m, 3H), 7.61 – 7.54 (m, 2H), 7.49 – 7.34 (m, 5H), 7.19 – 7.10 (m, 1H), 6.94 (d, J = 8.3 Hz, 1H), 6.07 (s, 2H), 1.87 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.25, 84.61, 163.10, 158.57, 153.14, 148.23, 148.01, 137.51, 132.39, 130.69, 129.14, 128.99, 128.88, 128.85, 128.63, 127.00, 125.47, 118.89, 110.54, 108.45, 102.09, 16.58; IR (KBr) : 3063, 1705, 1686, 1633, 1498; HRMS (ESI-TOF) calcd for C₂₆H₁₈N₂O₅ ([M+H]⁺): 439.1294, found: 439.1297.

(Z)-1-(4-(Benzyloxy)phenyl)-3-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4ylidene)-3-phenylpropane-1,2-dione (4g)

Yield : 68%; Brown semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.82 – 7.77 (m, 2H), 7.61 – 7.55 (m, 2H), 7.52 – 7.43 (m, 6H), 7.42 – 7.28 (m, 6H), 7.21 – 7.12 (m, 1H), 5.14 (s, 2H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.88, 186.01, 163.00, 158.67, 157.89, 148.11, 137.41, 136.55, 133.63, 132.16, 130.65, 129.61, 129.28, 128.90, 128.77, 128.66, 128.54, 128.14, 127.68, 125.38, 124.54, 121.94, 118.73, 115.81, 70.21, 16.49; IR (KBr) : 3058, 1707, 1679, 1578, 1497; HRMS (ESI-TOF) calcd for C₃₂H₂₄N₂O₄ ([M+H]⁺): 501.1814, found: 501.1782.

(Z)-3-(4-Bromophenyl)-1-(4-ethylphenyl)-3-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4Hpyrazol-4-ylidene)propane-1,2-dione (4h)

Yield : 81%; Brown semi solid; Reaction time: 2 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 2H), 7.68 – 7.56 (m, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.28 (m, 4H), 7.15 (t, *J* = 7.3 Hz, 2H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.91 (s, 3H), 1.28 (t, *J* = 7.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.83, 186.07, 162.80, 156.76, 151.67, 147.71, 137.27, 132.06, 131.47, 131.09, 130.08, 129.88, 129.34, 128.88, 128.13, 125.44, 118.74, 29.25, 16.64, 15.12; IR (KBr) : 3050, 1715, 1667, 1625, 1486; HRMS (ESI-TOF) calcd for C₂₇H₂₁BrN₂O₃ ([M+H]⁺): 501.0814, found: 501.0811.

Typical experimental procedure for the synthesis of compounds (5a-b)

A mixture of 3-methyl-1,4,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-c]pyrazole-4,5diol (**3**, 1mmol) and *p*-TsOH.H₂0 (1.0 eq.) in respective alcohols (5 mL) was placed in a round bottom flask and stirred at room temperature until the completion of the reaction. After completion of the reaction as indicated by TLC, the reaction mixture was washed with ethylacetate and water for three times. Then the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The purification was carried out by 8% (ethylacetate / hexane) mixture to afford the product **5a** as a white solid in very good yield.

4-Methoxy-3-methyl-1,4,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-c] pyrazol-5-ol (5a)

Yield : 90%; White solid; Reaction time: 5 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.9 Hz, 2H), 7.51 (d, *J* = 6.9 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 12H), 7.20 (d, *J* = 6.0 Hz, 1H), 5.40 (d, *J* = 9.8 Hz, 1H), 3.93 (d, *J* = 10.1 Hz, 1H), 3.46 (s, 3H), 2.36 (s, 1H), 1.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.17, 146.04, 137.28, 135.96, 129.18, 128.98, 128.92, 128.57, 128.34, 128.08, 127.99, 127.15, 127.05, 125.95, 122.72, 120.43, 113.60, 97.31, 81.53, 78.15, 52.28, 14.91; HRMS (ESI-TOF) calcd for C₂₆H₂₄N₂O₃ ([M+H]⁺): 413.1866, found: 413.1857. **4-Ethoxy-3-methyl-1,4,6-triphenyl-1,4,5,6-tetrahydropyrano[2,3-***c***] pyrazol-5-ol (5b**)

Yield : 85%; White solid; Reaction time: 5 h; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.78 (m, 2H), 7.52 – 7.35 (m, 11H), 7.32 (d, *J* = 6.6 Hz, 1H), 7.22 (d, *J* = 7.4 Hz, 1H), 5.39 (d, *J* = 9.9 Hz, 1H), 3.92 (d, *J* = 8.8 Hz, 1H), 3.65 (dd, *J* = 13.5, 6.8 Hz, 2H), 2.60 (s, 1H), 1.85 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.80, 148.04, 139.27, 138.42, 137.36, 129.16, 128.91, 128.58, 128.51, 128.14, 127.82, 126.99, 125.90, 120.39, 98.00, 81.63, 78.00, 59.78, 15.55, 14.87; HRMS (ESI-TOF) calcd for C₂₇H₂₆N₂O₃ ([M+H] ⁺): 427.2021, found: 427.2017.

Crystal data and structure refinement for compound 3a

Identification code	MB-MSP-AA-SS
Empirical formula	$C_{25}H_{22}N_2O_3$
Formula weight	398.44
Temperature/K	298 (2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.2883(4)
b/Å	9.8313(4)
c/Å	18.7276(7)
α/°	90
β/°	101.498(4)
$\gamma^{/\circ}$	90
Volume/Å ³	2036.66(14)
Z	8
$\rho_{calc}g/cm^3$	2.599
μ/mm^{-1}	0.172
F(000)	1680.0
Crystal size/mm ³	0.7 imes 0.52 imes 0.42
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	7.846 to 58.342
Index ranges	$-13 \le h \le 15, -13 \le k \le 13, -23 \le l \le 25$
Reflections collected	15572
Independent reflections	4848 [R _{int} = 0.0306, R _{sigma} = 0.0329]
Data/restraints/parameters	4848/0/275
Goodness-of-fit on F ²	1.029
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0473, wR_2 = 0.1070$
Final R indexes [all data]	$R_1 = 0.0784, wR_2 = 0.1235$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.15

Crystal data and structure refinement for compound 4a

Identification code	MB-MSP-609-S
Empirical formula	$C_{25}H_{18}N_2O_3$
Formula weight	394.41
Temperature/K	298(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6663(14)
b/Å	10.7447(16)
c/Å	10.7533(10)
α/°	66.900(12)
β/°	85.830(10)
γ/°	80.391(12)
Volume/Å ³	1012.9(2)
Z	2
$\rho_{calc}g/cm^3$	1.293
μ/mm^{-1}	0.086
F(000)	412.0
Crystal size/mm ³	0.82 imes 0.72 imes 0.42
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	6.406 to 58.254
Index ranges	$-13 \le h \le 12, -14 \le k \le 13, -14 \le l \le 14$
Reflections collected	10884
Independent reflections	4715 [$R_{int} = 0.0165$, $R_{sigma} = 0.0197$]
Data/restraints/parameters	4715/0/272
Goodness-of-fit on F ²	1.029
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0455, wR_2 = 0.1134$
Final R indexes [all data]	$R_1 = 0.0583, wR_2 = 0.1231$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.20

1H, & 13C NMR Spectra for the Compounds 3a-w, 3aa, 4a-h & 5a-b

100 90 f1 (ppm) -1

— 1.90

NOESY Spectrum of Racemic Compound 3a

HPLC of Racemic Compound 3a

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.039	19552608	595245	49.518	62.766
2	20.356	19933003	353106	50.482	37.234
Tota		39485612	948350	100.000	100.000

<Peak Table>

PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Height%	Area%
1	14.035	17272171	537249	32.853	21.756
2	20.438	62119112	1098053	67.147	78.244
Total		79391282	1635302	100.000	100.000