Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Highly spin-polarized electronic structure and magnetic properties of

Mn2.25Co0.75Al1-xGex Heusler alloys: first-principles calculations

Yue Wang^a, Liying Wang^{a,b*} and Wenbo Mi^a

^aTianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology,

School of Science, Tianjin University, Tianjin 300354, China

^bTianjin Demonstration Center for Experimental Physics Education, School of Science, Tianjin

University, Tianjin 300354, China

^{*}Author to whom all correspondence should be addressed.

E-mail address: <u>living.wang@tju.edu.cn</u> (Living Wang)

A. Band structures of Mn₂CoAl and Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x at the ground states with SOC

The calculated band structures of Mn_2CoAl and $Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x$ by considering SOC are shown in Fig. S1. It is found that SOC does not affect the HM/SGS characteristics of Mn_2CoAl and $Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x$. Only some degenerated states are split into several singlet states at the high symmetry points.

Fig. S1. Band structure of (a) Mn_2CoAl , (b) $Mn_{2.25}Co_{0.75}Al$, (c) $Mn_{2.25}Co_{0.75}Al_{0.75}Ge_{0.25}$, (d) $Mn_{2.25}Co_{0.75}Al_{0.5}Ge_{0.5}$, (e) $Mn_{2.25}Co_{0.75}Al_{0.25}Ge_{0.75}$ and (f) $Mn_{2.25}Co_{0.75}Ge$ at equilibrium lattice constant with SOC. The origin and blue circles represent the spin-up and spin-down channels, respectively.

B. Atomic-resolved MAE of Mn₂CoAl and Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x under uniaxial strains

The atomic-resolved MAEs of Mn₂CoAl and Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x at a uniaxial strain of -6%, 0% and 6% are shown in Fig.S2. In Fig.S2 (b)-(e), it can be clearly seen that the atomic-resolved MAEs of Mn_{2.25}Co_{0.75}Al, Mn_{2.25}Co_{0.75}Al_{0.75}Ge_{0.25}, Mn_{2.25}Co_{0.75}Al_{0.5}Ge_{0.5} and Mn_{2.25}Co_{0.75}Ge at a uniaxial strain of -6%, 0% and 6% display quite similar results with that of Mn_{2.25}Co_{0.75}Al_{0.25}Ge_{0.75} which has been discussed detailly in the main work. The nearly zero MAE of the cubic Mn_{2.25}Co_{0.75}Al, $Mn_{2.25}Co_{0.75}Al_{0.75}Ge_{0.25}$, $Mn_{2.25}Co_{0.75}Al_{0.5}Ge_{0.5}$ and $Mn_{2.25}Co_{0.75}Ge$ ($\varepsilon_t=0\%$) mainly comes from the minor opposite MAE of Mn(A2) atom in I -layer and Mn(A3) atom in III-layer. At ε =-6%, the positive MAE mainly comes from Mn(A2) and Co(C2) atom in I -layer, Mn(C) and Co(C3) atoms in \mathbb{II} -layer. Mn(A3) atom in \mathbb{II} -layer contributes a relatively small negative MAE. Thus, $Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x$ exhibits the in-plane magnetic anisotropy at ε_t =-6%. At ε_t =6%, every layer contributes a negative net MAE, where Co(C1), Mn(A3) and Mn(C) in I -, Ⅲ-layers gives much contribution. Thus, the magnetic easy axis turns from the (100) direction into the (001) direction for Mn_{2.25}Co_{0.75}Al, Mn_{2.25}Co_{0.75}Al_{0.75}Ge_{0.25}, Mn_{2.25}Co_{0.75}Al_{0.5}Ge_{0.5} and Mn_{2.25}Co_{0.75}Ge with varying uniaxial strains. However, it should be noted that the origin of the MAE in Mn₂CoAl is different from that in $Mn_{2,25}Co_{0,75}Al_{1-x}Ge_x$ under uniaxial strain, as shown in Fig.S2 (a). The contribution of Mn(A) and Mn(B) atoms to MAE are negligible which is different from $Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x$. And the negative and positive MAE at ε_t =6% and ε_t =-6% just origin from Co(C) atom.

Fig. S2 Atomic-resolved MAE of (a) Mn_2CoAl , (b) $Mn_{2.25}Co_{0.75}Al$, (c) $Mn_{2.25}Co_{0.75}Al_{0.75}Ge_{0.25}$, (d) $Mn_{2.25}Co_{0.75}Al_{0.5}Ge_{0.5}$ and (e) $Mn_{2.25}Co_{0.75}Ge$ at a uniaxial strain of -6%, 0% and 6%. (f) The atomic structure of $Mn_{2.25}Co_{0.75}Al_{1-x}Ge_x$ (*x*=0, 0.25, 0.50, 1.00), where I-IV refers to the layer numbers. The inset of (a) is the atomic structure of Mn_2CoAl .