		100µm		
1	urrent density	Slope (b)	Intercept(a)	i ₀ /mA·cm ⁻² (Exchange
				current density)
	5mA	77.6mv/dec	0.7171	5.74*10 ⁻¹⁰
9	10mA	7mv/dec	0.82205	0.0931
2				
	15mA	544.4mv/dec	0.79443	0.2064
	20mA	549.8mv/dec	0.9024	0.0228
	- Called to have			
	25mA	749.2mv/dec	0.57163	0.1726

Supplementary File

S1. SEM images of Ni foam

Figure S2. The variation curve of deposition mass

Table S1. Calculation of the Tafel curve

Figure

To probe the kinetics of CO_2 reduction, tafel plot data for CO_2 reduction to CO on Sn@Ni of different plating current were obtained and the tafel relationship can be expressed as follows:

$$E = E_0 - \frac{2.303RT}{\alpha n_{\alpha} F} \log(i_0) + \frac{2.303RT}{\alpha n_{\alpha} F} \log^{[t_0]}(i_{CO})$$

$$b = \frac{2.303RT}{\alpha n_{\alpha} F}$$
2

where E is the applied cathode potential, E_0 is the standard potential for the CO₂/CO couple, b is the Tafel slope, a is the electron transfer coefficient, n_{α} is the electron transfer number, i_0 is the exchange current density, and i_{CO} is the partial current density for CO₂ reduction to produce CO.