Properties and mechanism for selective adsorption of Au (III) on an ionic liquid adsorbent by grafting Nmethyl imidazole onto chloromethylated polystyrene beads

Xin Kou, Bowen Ma, Rui Zhang, Miaomiao Cai, Yong Huang, Ying Yang*

The Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province; School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

Au(III), ionic liquid functionalization, selectivity, $d-\pi$ interaction

The elemental analysis of the CMPS-IL was shown in **Table S1**. The grafting rate of N-methyl imidazole can be deduced from the nitrogen and carbon contents of the CMPS-IL. It was calculated by using equation (1):

grafting rate =
$$\frac{27N}{7C - 12N}$$
 % (1)

Table S1 The elemental analysis of CMPS-IL

		N(%)	C(%)	H(%)	grafting rate(%)
CMDS II	1-1	9.38	62.64	5.384	77 6
CIVIT 5-IL	1-2	9.36	62.59	5.374	//.0

Fig. S1 DSC curves of (a) CMPS;(b) CMPS-IL

Fig. S2 Pseudo first-order model of CMPS-IL for Au(III) at different temperatures(■ for 298K; • for 308K; • for 318K)

Table S2. Kinetic parameters obtained from pseudo-first- and -second-order models of CMPS-IL

T(K)	$q_{e.exp}(mg g^{-1})$ -	Pseudo-first-order model				Pseudo-second-order model			
		$q_{e.cal} (mg g^{-1})$	$k_1(h^{-1})$	R ²		$q_{e,cal} (mg \ g^{\text{-}1})$	$k_2(g mg^{-1} h^{-1})$	R ²	
298	58.71	52.14	2.149	0.998		64.52	0.058	0.999	
308	60.92	47.38	2.018	0.976		66.27	0.064	0.999	
318	65.98	57.77	2.367	0.986		71.33	0.064	0.999	

for Au(III) at different temperatures

Fig. S3 Freundlich model of CMPS-IL for Au(III) at different temperatures(■ for 298K;● for 308K;▲ for 318K)

 Table S3. Adsorption isotherm parameter values obtained for Langmuir and Freundlich isotherm

 models, and thermodynamic parameters for Au(III) adsorption on CMPS-IL at different

temperatures											
		Langmuir isotherm model			Freundl	ich isotherr	n model	Thermodynamic			
T(K)	$q_{m,exp}(mg\;g^{\text{-}1})$	b (L mg ⁻¹)	$q_{m,cal}(mg\;g^{\text{-}1})$	R ²	K _f	1/n	R ²	$\Delta G (kJ mol^{-1})$	$\Delta H (kJ mol^{-1})$	$\Delta S (J \text{ mol}^{-1} \text{ K}^{-1})$	
298	410.9	0.01636	416.7	0.994	60.79	0.2721	0.949	-0.002			
308	475.0	0.02609	476.2	0.996	84.51	0.2538	0.897	-1.239	36.88	123.7	
318	516.5	0.03433	520.8	0.998	75.17	0.2917	0.894	-2.476			
$\begin{array}{c} 0.25 \\ 0.20 \\ 0.15 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.$											

Fig. S4 Effect of temperature and initial Au(III) concentration on the separation factor (R_L).

Table S4. Selectivity coefficient ($\beta_{Au/M}$) data and extraction efficiency (E_{Au}) data towards different

Fig. S4 (a) Recovery of Au(III) with HCl of different molarities in 0.25 M thiourea (at 298 K for 3 h); (b) Effect of time on desorption efficiency (40 mg of Au(III) saturated CMPS-IL, 50mL of the mixture of HCl-thiourea with molar ratio=3:1, 298K)