First principles study on magnetism in some novel MXene materials

Kan Luo^{a,b}, Xian-Hu Zha^c, Qing Huang^b, Cheng-Te Lin^d, Minghui Yang^b, Shenghu Zhou^{a,*} and Shiyu Du^{b,*}

^aSchool of Chemical Engineering, East China University of Science and Technology, Shanghai, China

^bEngineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering,

Chinese Academy of Sciences, Ningbo, Zhejiang, China

°Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen, China

^dKey Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, China

Table S1 The calculated lattice constants, total energies (eV) and atomic magnetic moment for the metal atoms (μ B/atom) of 1H and 1T type M₂C (M=Sc, Ti, Fe, Co, Ni, Cu, Zn) MXenes in AFM, FM and NM configurations, and the ground energy configuration are highlighted in bold-typeface.

			a (Å)	<i>E</i> (eV)	Magnetization				a (Å)	<i>E</i> (eV)	Magnetization
Sc ₂ C	1H	AFM	3.283	-37.290	0.328	Ti ₂ C	1H	AFM	3.042	-40.715	0.812
		FM	3.281	-37.298	0.389			FM	3.042	-40.702	0.521
		NM	3.251	-37.077				NM	3.042	-40.429	
	1T	AFM	3.339	-38.386	0.213		1T	AFM	3.038	-42.060	0.629
		FM	3.341	-38.415	0.422			FM	3.059	-42.009	0.488
		NM	3.322	-38.290				NM	3.022	-41.759	
Fe ₂ C	1H	AFM	2.622	-42.537	1.902	Co ₂ C	1H	AFM	2.540	-41.210	1.349
		FM	2.602	-43.014	2.192			FM	2.562	-41.313	1.260
		NM	2.522	-42.271				NM	2.464	-40.677	
	1T	AFM	2.833	-43.476	2.223		1T	AFM	2.824	-41.135	1.049
		FM	2.794	-43.528	2.077			FM	2.875	-41.075	0.998
		NM	2.857	-41.917				NM	2.865	-40.738	
Ni ₂ C	1H	NM	2.584	-39.015		Cu_2C	1H	NM	2.700	-35.9165	
	1T	NM	2.899	-39.453			1T	NM	2.905	-35.75592	
Zn_2C	$1\mathrm{H}$	NM	3.035	-32.177							
	1T	NM	3.471	-32.992							

^{*} Corresponding author E-mail address: <u>zhoushenghu@ecust.edu.cn</u> (S. Zhou) <u>dushiyu@nimte.ac.cn</u> (S. Du)

Fig. S1 The phonon dispersions of Sc₂C (a), Ti₂C (b), Fe₂C (c), Co₂C (d), Ni₂C (e), Cu₂C (f) and Zn₂C (g) MXenes along the high symmetry points $\Gamma(0, 0, 0) \rightarrow M(\frac{1}{2}, 0, 0) \rightarrow K(\frac{1}{3}, \frac{1}{3}, 0) \rightarrow \Gamma(0, 0, 0)$ of the Brillouin zone.

Fig. S2 Top and side view of the spin charge density distribution of the FM magnetic configuration 1T-Fe₂C (a) and 1H-Co₂C (b).

Fig. S3 Average magnetization orientation as a function of temperature for magnetic $1T-Sc_2C$ (a), $1T-Ti_2C$ (b), $1T-Fe_2C$ (c) and $1H-Co_2C$ (d) MXenes from Monte Carlo simulations.