Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

> Electronic Supplementary Material (ESI) for RSC Advance This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Synthesis of CdS-loaded (CuC₁₀H₂₆N₆)₃(PW₁₂O₄₀)₂ for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation

Feng Li^{a, c}, Zhuomin Qiang^a, Shunqiang Chen^a, Jianyu Wei^{b*}, Taohai Li^{a, c}, Dabin Zhang^d

a College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, China.

b China Tobacco Guangxi Industrial Co., Ltd, Nanning, Guangxi 530001, PR China. E-mail: jtx_wjy@163.com

c Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland.

d School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.

Fig. S1. The possible chemical structure of $(CuC_{10}H_{26}N_6)_3(PW_{12}O_{40})_2$.

Fig. S2. TEM images of (a) CuPW, (b) CdS, (c) CuPW-CdS-15, (d) CuPW-CdS-10 and (e)-(j) the EDX mapping of CuPW-CdS-10.

Fig. S3. (a) UV-vis DRS of CuPW-Cds samples. (b) Plot of transformed KM function vs. hv for the corresponding samples.

Fig. S4. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of the obtained samples.

Fig. S5. Absorption ability evaluation of CuPW-CdS-10 for different (a) TC (b) RhB concentration in the dark condition.

Fig. S6. MS of TC intermediation production.

Fig. S7. First-order kinetics of (a) TC and (b) RhB with reusability tests.

Fig. S8. XRD patterns of the fresh and used CuPW-CdS-10 composite.

Fig. S9. Reactive specie trapping experiments of CuPW-CdS-10.

Materials	Synthetic method	Photocatalytic degradation	Reference
CDs/g-C ₃ N ₄ /MoO ₃ composites	Hydrothermal and calcination method	88.4% TC removed	[S1]
g-C ₃ N ₄ /Ag/P3HT composites	Two-step deposition technique	~80% TC and ~95% MO removed	[S2]
Ag/g-C ₃ N ₄ plasmonic photocatalysts	Thermal exfoliation strategy and photo-reduction method	~83% TC removed	[83]
Modified red mud	Calcination treatment	88.4% TC removed	[S4]
γ -Bi ₂ MoO ₆ /Bi ₁₂ GeO ₂₀ heterostructure	Heat treatment	77% TC and 97% MBT removed	[85]
ZnO/g-C ₃ N ₄ nanocomposite	Thermal condensation and hydrothermal in situ growth	78.4% TC and 63.5% OTC removed	[S6]
(NGQDs)-BiVO ₄ /g-C ₃ N ₄	Calcine and low temperature process	91.5% TC, 72.4% CIP and 66.7% OTC removed	[S7]
Hybrid BiOBr/UiO-66- NH ₂ composite	Co-precipitation method	83% RhB removed	[S8]
CdS-loaded (CuC ₁₀ H ₂₆ N ₆) ₃ (PW ₁₂ O ₄₀) ₂ composites	one-pot self-assembly process	79% TC and 91% RhB removed	This work

Table S1. The comparison of photocatalytic performance of different materials.

Abbreviations: TC--Tetracycline; MO--Methyl Orange; MBT--2-Mercaptobenzothiazole; OTC--Oxytetracycline; CIP--Ciprofloxacin; RhB--Rhodamine B

Table 52. Specific surface area analysis and textural parameters of the samples.				
Samples	$S_{BET} (m^2 g^{-1})$	Pore Volume (cm ³ /g)	Pore Size (nm)	
CuPW-CdS-0	10.4532	0.029112	11.14009	
CuPW-CdS-5	13.0224	0.040793	12.53004	
CuPW-CdS-10	19.2756	0.075276	15.62093	
CuPW-CdS-15	22.2850	0.084863	15.23240	

 Table S2. Specific surface area analysis and textural parameters of the samples.

Reference

- [S1] Z. J. Xie, Y. P. Feng, F. L. Wang, D. N Chen, Q. X. Zhang, Y. Q. Zeng, W. Y. Lv and G. G. Liu, *Appl. Catal. B. Environ.*, 2018, 229, 96-104.
- [S2] F. Liu, T. P. Nguyen, Q. Wang, F. Massuyeau, Y. Dan and L. Jiang, *Appl. Surf. Sci.*, 2019, **496**, 143653.
- [S3] W. C. Xu, S. F. Lai, S. C. Pillai, W. Chu, Y. Hu, X. D. Jiang, M. L. Fu, X. L. Wu, F. H. Ii and H. L. Wang, J. Colloid. Inter. Sci., 2020, 574, 110-121.
- [S4] W. L. Shi, H. J. Ren, M. Y. Li, K. K. Shu, Y. S. Xu, C. Yan and Y. B. Tang, *Chem. Eng. J.*, 2019, **382**, 122876.
- [S5] X. W. Ruan, H. Hu, G. B. Che, P. J. Zhou, C. B. Liu and H. J. Dong, *Appl. Surf. Sci.*, 2020, **499**, 143668.
- [S6] J. Y. Hu, R. Yang, Z. H. Li, Y. Q. Sun, L. B. Qu and N. K. Alexander, *Solid State Sci.*, 2019, 92, 60-67.
- [S7] M. Yan, F. F. Zhu, W. Gu, L. Sun, W. D. Shi and Y. Q. Hua, RSC Adv., 2016, 66, 61162-61174.
- [S8] B. Rehama, Q. H. Shen, L. F. Wei, D. D. Hao, N. X. Li and J. C. Zhou, *RSC Adv.*, 2018, 8, 2048-2058.