Supplementary information for

Design a p-n heterojunction in 0D/3D MoS₂/g-C₃N₄ composite for boosting the efficient separation of photogenerated carriers with

enhanced visible-light-driven H₂ evolution

Biao Zhou^a, Bo Yang ^{a,*}, Muhammad Waqas^a, Ke Xiao^a, Caizhen Zhu^a, Ling Wu^b

^a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.

^b Shenzhen Senior High School, Shenzhen 518040, PR China.

* Corresponding author

Dr. and Prof. Bo Yang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China Tel: +86 755 26732904 Fax: +86 755 26536141 E-mail: <u>boyang@szu.edu.cn</u>

Figures S1-S4 Table S1

Fig. S1 The optical bandgap of 3D-CN and BCN.

Fig. S2 The XPS total spectra of 0D/3D-MCN-3.5% and 2D/3D-MCN-

Fig. S3 The Mott-Schottky curve of 3D-CN.

Fig. S4 The Mott-Schottky curves of 2D/3D-MCN-5%.

Photocatalysts	Light source	Reaction conditions	H ₂ evolution rate	Ref.
(0D-2D) MoS ₂ /g- C ₃ N ₄	300W Xe lamp, λ > 420 nm	2wt% Pt, methanol (25 vol%)	222.9 μmol.h ⁻¹ .g ⁻¹ (50mg)	[1]
(2D-2D) MoS ₂ /g- C ₃ N ₄	300W Xe lamp, λ > 400 nm	methyl alcohol (10 vol%)	385.04 μmol.h ⁻¹ .g ⁻¹ (50mg)	[2]
(3D-2D) MoS ₂ /g- C ₃ N ₄	300W Xe lamp, λ > 420 nm	2wt% Pt, Methanol (25vol%)	533.99 μmol.h ⁻¹ .g ⁻¹ (50mg)	[3]
(0D-2D) MoS ₂ /g- C ₃ N ₄	$300W Xe lamp, \lambda \\ > 400 nm$	Lactic acid (20 vol%)	660 μmol.h ⁻¹ .g ⁻¹ (50mg)	[4]
(0D-2D)MoS ₂ /N dope-g-C ₃ N ₄	300W Xe lamp, λ > 420 nm	TEOA (10 vol%)	212.41 μmol.h ⁻¹ .g ⁻¹ (50mg)	[5]
(0D-2D) MoS ₂ /g- C ₃ N ₄	300W Xe lamp, λ > 400 nm	TEOA (10 vol%)	252 μmol.h ⁻¹ .g ⁻¹ (10mg)	[6]
$NiS_2/g-C_3N_4$	$\begin{array}{l} 300W \ Xe \ lamp, \lambda \\ > 420 \ nm \end{array}$	TEOA (10 vol%)	715.83 μmol.h ⁻¹ .g ⁻¹ (50mg)	[7]
Co ₃ O ₄ /g-C ₃ N ₄ /Pt	300W Xe lamp, λ > 300 nm	TEOA (10 vol%)	610µmol.h ⁻¹ .g ⁻¹ (0.02g)	[8]
(0D-3D)	300W Xe lamp, λ	Lactic acid (10	817.1 μmol.h ⁻¹ .g ⁻¹	This
$MoS_2/g-C_3N_4$	> 400 nm	vol%)	(50mg)	work

Table S1 The photocatalytic H_2 production performance of the g-C₃N₄-basedphotocatalysts reported in recent years and 0D/3D-MCN-3.5%.

References:

- [1] Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian, X. Xu, X. Duan, H. Sun, M. O Tade, S. Wang, Appl. Catal. B-Environ. 2018, 228, 64-74.
- [2] W. Li, L. Wang, Q. Zhang, Z. Chen, X. Deng, C. Feng, L. Xu, M. Sun, J. Alloy. Compd. 2019, 808, 151681.
- [3] Y. Liu, X. Xu, J. Zhang, H. Zhang, W. Tian, X. Li, M.O. Tade, H. Sun, S. Wang, Appl. Catal. B-Environ. 2018, 239, 334-344.

- [4] X. Shi, M. Fujitsuka, S. Kim, T. Majima, Small. 2018, 14, 1703277.
- [5] Y. Jiao, Q. Huang, J. Wang, Z. He, Z. Li, Appl. Catal. B-Environ. 2019, 247, 124-132.
- [6] H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang, J. Zhang, J. Mater. Chem. A. 2015, 3, 7375-7381.
- [7] H.T. Li, M. Wang, Y.P. Wei, F. Long, J. Colloid Interface Sci. 2019, 534, 343-349.
- [8] D. Zheng, X.N. Cao, X.C. Wang, Angew. Chem. Int. Ed. 2016, 55, 11512-11516.