Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

A novel approach for obtaining α,β-diaminophosphonates bearing structurally diverse side chains and their interactions with transitions metal ions studied by ITC

Paweł Lenartowicz,^{a*} Danuta Witkowska,^b Beata Żyszka-Haberecht,^a Błażej Dziuk,^{a,c} Krzysztof Ejsmont,^a Jolanta Świątek-Kozłowska^b and Paweł Kafarski^d

 ^aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland.
^bPublic Higher Medical Professional School in Opole, Katowicka 68, 45-060 Opole, Poland.
^cFaculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

^dDepartment of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

e-mail: pawel.lenartowicz@uni.opole.pl

Table of contents

1.	Interaction of Zn ²⁺ ion with three model aminophosponates 2e', 2f', 2g'	. 2
2.	¹ H, ¹³ C, ³¹ P NMR spectra	. 3
3.	Crystallographic data	96

 Interaction of Zn²⁺ ion with three model aminophosponates 2e', 2f', 2g'

Fig. SI1 ITC titration (raw data above and corresponding plots below) of 3 mM Zn²⁺ to 2e', 2f'and 2g'

2. ¹H, ¹³C, ³¹P NMR spectra

— 25.63

--- 25.60

..19

66	64	62	60	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	0
																f1 (p	opm)																

· ·																											
13	0	125	120	115	110	105	100	95	90	85	80	75	70 f	65 1 (ppm	60 1)	55	50	45	40	35	30	25	20	15	10	5	0

--- 9.76

 $< \frac{25.53}{25.12}$

 $\displaystyle < \frac{25.06}{24.81}$

---- 20.47

 $<^{25.18}_{25.02}$

— 20.60

 $<^{25.21}_{25.05}$

3. Crystallographic data

Table S1: Experimental details for 3 and 5

	3	5
CCDC No.	1935968	1935969
Crystal data		
Chemical formula	$C_{14}H_{20}NO_5P$	$C_{13}H_{25}N_2O_6P$
M _r	313.28	336.32
Crystal system, space group	Monoclinic, P2 ₁ /c	Monoclinic, P2 ₁ /n
a, b, c (Å)	10.7418 (3), 10.0430 (2), 14.6765 (4)	9.9692 (3), 17.6005 (5), 10.3762 (3)
β (°)	104.329 (3)	111.329 (4)
<i>V</i> (Å ³)	1534.04 (7)	1695.94 (10)
μ (mm ⁻¹)	0.20	0.19
Ζ	4	4
μ (mm ⁻¹)	0.20	0.19
Crystal size (mm)	$0.4 \times 0.3 \times 0.2$	$0.5 \times 0.3 \times 0.1$

Data collection

Absorption correction	_	-
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	10172, 2987, 2459	11346, 3315, 2510
R _{int}	0.019	0.028
(sin θ/λ) _{max} (Å ⁻¹)	0.617	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.077, 1.07	0.031, 0.071, 0.94
No. of reflections	2987	3315
No. of parameters	192	204
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.38, -0.34	0.36, -0.37

Fig. SI2 Molecular structures of the studied molecules in the asymmetric part of unit cell. Displacement ellipsoids are drawn at the 50% probability level.

3			
P1-03	1.4673 (9)	C5—H5	0.9300
P1—05	1.5666 (9)	O5—C13	1.4707 (14)
P1—O4	1.5816 (9)	C6—C7	1.3879 (18)

 Table S2: Selected geometric parameters (Å, º) for 3 and 5.

P1—C9	1.7977 (13)	C6—H6	0.9300
01-C8	1.3542 (15)	С7—Н7	0.9300
01—C1	1.4532 (15)	C9—C10	1.3296 (17)
N1—C8	1.3597 (16)	C10—H10A	0.9300
N1-C9	1.4088 (16)	C10—H10B	0.9300
N1—H1	0.8600	C11—C12	1.5032 (19)
C1—C2	1.4991 (18)	C11—H11A	0.9700
C1—H1A	0.9700	C11—H11B	0.9700
C1—H1B	0.9700	C12—H12A	0.9600
02—C8	1.2099 (15)	C12—H12B	0.9600
C2—C7	1.3894 (19)	C12—H12C	0.9600
C2—C3	1.3933 (18)	C13-C14	1.5019 (18)
C3—C4	1.3896 (19)	С13—Н13А	0.9700
С3—Н3	0.9300	С13—Н13В	0.9700
C4—C5	1.3838 (19)	С14—Н14А	0.9600

C4—H4	0.9300	C14—H14B	0.9600
O4—C11	1.4579 (15)	C14—H14C	0.9600
C5—C6	1.386 (2)		
O3-P1-O5	116.33 (5)	С2—С7—Н7	119.8
O3-P1-O4	114.28 (5)	02-C8-01	123.66 (12)
05-P1-04	102.90 (5)	02-C8-N1	126.98 (12)
O3-P1-C9	112.34 (6)	01-C8-N1	109.36 (10)
O5-P1-C9	102.63 (5)	C10-C9-N1	126.85 (12)
O4-P1-C9	107.16 (5)	C10-C9-P1	116.47 (10)
C8-01-C1	114.44 (10)	N1-C9-P1	116.67 (9)
C8-N1-C9	124.25 (11)	C9-C10-H10A	120.0
C8—N1—H1	117.9	C9—C10—H10B	120.0
C9-N1-H1	117.9	H10A—C10—H10B	120.0
01—C1—C2	107.07 (10)	O4-C11-C12	109.80 (11)
01—C1—H1A	110.3	O4-C11-H11A	109.7

C2-C1-H1A	110.3	C12-C11-H11A	109.7
O1-C1-H1B	110.3	O4-C11-H11B	109.7
C2-C1-H1B	110.3	C12-C11-H11B	109.7
H1A—C1—H1B	108.6	H11A—C11—H11B	108.2
C7—C2—C3	119.17 (13)	C11-C12-H12A	109.5
C7—C2—C1	120.45 (12)	C11-C12-H12B	109.5
C3-C2-C1	120.38 (12)	H12A—C12—H12B	109.5
C4—C3—C2	120.25 (12)	C11-C12-H12C	109.5
С4—С3—Н3	119.9	H12A—C12—H12C	109.5
С2—С3—Н3	119.9	H12B—C12—H12C	109.5
C5-C4-C3	120.20 (13)	O5-C13-C14	107.14 (10)
С5—С4—Н4	119.9	O5—C13—H13A	110.3
С3—С4—Н4	119.9	C14-C13-H13A	110.3
C11-04-P1	120.06 (8)	O5—C13—H13B	110.3
C4—C5—C6	119.81 (13)	C14—C13—H13B	110.3

С4—С5—Н5	120.1	H13A—C13—H13B	108.5
C6—C5—H5	120.1	C13-C14-H14A	109.5
C13-05-P1	119.53 (8)	C13-C14-H14B	109.5
C5—C6—C7	120.15 (13)	H14A—C14—H14B	109.5
С5—С6—Н6	119.9	C13-C14-H14C	109.5
С7—С6—Н6	119.9	H14A—C14—H14C	109.5
C6—C7—C2	120.43 (13)	H14B—C14—H14C	109.5
С6—С7—Н7	119.8		
C8-01-C1-C2	-178.57 (10)	C1—C2—C7—C6	179.86 (12)
01-C1-C2-C7	-78.83 (15)	C1-01-C8-02	-3.16 (18)
01-C1-C2-C3	101.51 (14)	C1-01-C8-N1	177.01 (10)
C7-C2-C3-C4	0.54 (19)	C9-N1-C8-O2	-2.2 (2)
C1-C2-C3-C4	-179.79 (12)	C9-N1-C8-O1	177.62 (11)
C2-C3-C4-C5	0.0 (2)	C8-N1-C9-C10	-11.3 (2)
03-P1-04-C11	32.10 (11)	C8-N1-C9-P1	167.72 (10)

O5-P1-O4-C11	159.15 (9)	O3-P1-C9-C10	0.06 (13)
C9-P1-O4-C11	-93.06 (10)	O5-P1-C9-C10	-125.65 (11)
C3-C4-C5-C6	-0.69 (19)	O4-P1-C9-C10	126.38 (10)
O3-P1-O5-C13	43.69 (11)	O3-P1-C9-N1	-179.06 (9)
O4-P1-O5-C13	-82.04 (9)	O5-P1-C9-N1	55.24 (10)
C9-P1-O5-C13	166.76 (9)	O4-P1-C9-N1	-52.74 (10)
C4-C5-C6-C7	0.7 (2)	P1-04-C11-C12	-104.59 (11)
C5-C6-C7-C2	-0.2 (2)	P1-05-C13-C14	-174.30 (9)
C3-C2-C7-C6	-0.48 (19)		
5			
P104	1.4629 (10)	С3—Н3В	0.9600
P1-05	1.5649 (10)	С3—НЗС	0.9600
P1-06	1.5696 (10)	C4—H4A	0.9600
P1-C8	1.8042 (14)	C4—H4B	0.9600
N1-C5	1.3498 (18)	C4—H4C	0.9600

N1-C6	1.4379 (18)	C6—C7	1.5279 (19)
N1—H1	0.8600	C6—H6A	0.9700
N2—C7	1.3560 (17)	С6—Н6В	0.9700
N2—C8	1.4089 (17)	C8—C9	1.3316 (19)
N2—H2	0.8600	С9—Н9А	0.9300
01-C5	1.3522 (17)	С9—Н9В	0.9300
01—C1	1.4785 (17)	C10-C11	1.495 (2)
02—C5	1.2099 (17)	C10—H10A	0.9700
03—C7	1.2230 (16)	C10—H10B	0.9700
O5—C10	1.4571 (17)	C11—H11A	0.9600
O6—C12	1.4623 (17)	C11—H11B	0.9600
C1-C2	1.511 (2)	C11—H11C	0.9600
C1—C3	1.516 (2)	C12—C13	1.493 (2)
C1—C4	1.517 (2)	C12—H12A	0.9700
C2—H2A	0.9600	C12—H12B	0.9700

С2—Н2В	0.9600	С13—Н13А	0.9600
C2—H2C	0.9600	C13—H13B	0.9600
С3—НЗА	0.9600	C13—H13C	0.9600
04—P1—05	111.55 (6)	N1-C5-O1	109.44 (12)
04-P1-06	115.90 (6)	N1-C6-C7	112.30 (11)
05-P1-06	102.84 (5)	N1-C6-H6A	109.1
O4-P1-C8	112.12 (6)	С7—С6—Н6А	109.1
O5-P1-C8	108.05 (6)	N1-C6-H6B	109.1
O6-P1-C8	105.68 (6)	С7—С6—Н6В	109.1
C5-N1-C6	119.26 (12)	H6A—C6—H6B	107.9
C5-N1-H1	120.4	O3-C7-N2	124.28 (13)
C6—N1—H1	120.4	03-C7-C6	121.81 (12)
C7—N2—C8	125.70 (12)	N2-C7-C6	113.91 (12)
C7—N2—H2	117.2	C9—C8—N2	127.15 (13)
C8—N2—H2	117.2	C9-C8-P1	119.33 (11)

C5-01-C1	121.05 (11)	N2-C8-P1	113.49 (10)
C10-O5-P1	122.64 (9)	С8—С9—Н9А	120.0
C12-06-P1	118.76 (9)	С8—С9—Н9В	120.0
01-C1-C2	110.53 (12)	Н9А—С9—Н9В	120.0
O1-C1-C3	110.55 (12)	O5-C10-C11	108.17 (12)
C2-C1-C3	111.86 (13)	O5-C10-H10A	110.1
O1-C1-C4	101.93 (11)	C11-C10-H10A	110.1
C2-C1-C4	111.05 (13)	O5-C10-H10B	110.1
C3-C1-C4	110.49 (13)	C11-C10-H10B	110.1
C1-C2-H2A	109.5	H10A—C10—H10B	108.4
C1-C2-H2B	109.5	C10-C11-H11A	109.5
H2A—C2—H2B	109.5	C10-C11-H11B	109.5
C1-C2-H2C	109.5	H11A—C11—H11B	109.5
H2A—C2—H2C	109.5	C10-C11-H11C	109.5
H2B—C2—H2C	109.5	H11A—C11—H11C	109.5

С1—С3—НЗА	109.5	H11B-C11-H11C	109.5
С1—С3—НЗВ	109.5	O6-C12-C13	109.27 (12)
НЗА—СЗ—НЗВ	109.5	O6-C12-H12A	109.8
С1—С3—Н3С	109.5	C13-C12-H12A	109.8
НЗА—СЗ—НЗС	109.5	O6-C12-H12B	109.8
НЗВ—СЗ—НЗС	109.5	C13-C12-H12B	109.8
C1—C4—H4A	109.5	H12A—C12—H12B	108.3
C1—C4—H4B	109.5	C12—C13—H13A	109.5
H4A—C4—H4B	109.5	С12—С13—Н13В	109.5
C1-C4-H4C	109.5	H13A—C13—H13B	109.5
H4A—C4—H4C	109.5	C12—C13—H13C	109.5
H4B—C4—H4C	109.5	H13A—C13—H13C	109.5
02-C5-N1	124.57 (14)	H13B—C13—H13C	109.5
02-C5-01	125.98 (14)		
04-P1-05-C10	176.90 (11)	C8-N2-C7-O3	-3.7 (2)

06-P1-05-C10	52.03 (12)	C8—N2—C7—C6	175.79 (12)
C8-P1-O5-C10	-59.44 (13)	N1-C6-C7-O3	-5.60 (19)
04-P1-06-C12	51.58 (11)	N1-C6-C7-N2	174.88 (12)
05-P1-06-C12	173.55 (9)	C7—N2—C8—C9	2.5 (2)
C8-P1-O6-C12	-73.24 (11)	C7—N2—C8—P1	-179.20 (11)
C5-01-C1-C2	61.35 (17)	O4-P1-C8-C9	-152.90 (11)
C5-01-C1-C3	-63.06 (17)	O5-P1-C8-C9	83.77 (13)
C5-01-C1-C4	179.46 (12)	O6-P1-C8-C9	-25.76 (13)
C6-N1-C5-O2	-13.2 (2)	O4-P1-C8-N2	28.64 (12)
C6-N1-C5-01	167.57 (11)	O5-P1-C8-N2	-94.68 (10)
C1-01-C5-02	3.9 (2)	O6-P1-C8-N2	155.78 (9)
C1-O1-C5-N1	-176.89 (11)	P1-05-C10-C11	179.43 (10)
C5-N1-C6-C7	-68.01 (17)	P1-06-C12-C13	-115.75 (11)

 Table S3: Selected hydrogen-bond parameters for 3 and 5.
D—H···A	<i>D</i> —Н (Å)	H…A (Å)	<i>D…A</i> (Å)	<i>D</i> −−H···A (°)
3				
N1—H1…O3 ⁱ	0.86	2.00	2.8401 (14)	166.9
C10—H10A…O2	0.93	2.29	2.8695 (16)	120.1
C14—H14A…O1 ⁱⁱ	0.96	2.63	3.5318 (17)	157.0
5				
N1—H1…O3 [™]	0.86	2.16	2.9800 (15)	159.6
N2—H2…O4	0.86	2.58	2.9898 (15)	110.5
N2—H2…O4 ^{iv}	0.86	2.07	2.8633 (15)	153.8
С2—Н2В…О2	0.96	2.49	3.041 (2)	116.7
С3—Н3В…О2	0.96	2.46	3.0163 (19)	116.8
C4—H4A…O2 ^v	0.96	2.44	3.3504 (19)	157.2
С9—Н9А…О3	0.93	2.25	2.8474 (17)	121.3
C12—H12A…O3 ^{vi}	0.97	2.46	3.4329 (18)	178.3

Symmetry code(s): (i) -x+1, y-1/2, -z+1/2; (ii) x, -y+3/2, z-1/2; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) x-1/2, -y+3/2, z-1/2; (vi) -x+1, -y+1, -z+1.