Supporting Information

A dual-sensitized luminescent Europium(III) complex as photoluminescent probe for selectively detecting Fe³⁺

Yafeng Zhao,^{a#} Yanhong Xu,^{a#} Bing Xu,^c Peipei Cen,^{b*} Weiming Song,^{a*} Lijuan Duan^a and Xiangyu Liu^{a,d*}

- ^a College of agriculture, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
- ^b College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
- ^c School of Chemistry and Chemical Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
- ^d State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
- # These authors contributed equally to this work.

*Corresponding author Dr. Xiangyu Liu Tel.: +86-951-2062004 Fax: +86-951-2062860

E-mail: xiangyuliu432@126.com

*Corresponding author

Prof. Weiming Song

E-mail: songwm@nxu.edu.cn

*Corresponding author

Dr. Peipei Cen

E-mail: 13895400691@163.com

Contents

Fig. S1 Molecular stacking charts of 1.

Fig. S2 PXRD patterns of 1.

Fig. S3 TG curve for 1.

Fig. S4 PXRD patterns of 1 after being soaked in water.

Fig. S5 NMR spectrum of 1 after dissolving in MeOH.

Table S1. Selected bond lengths (Å) and bond angles (°) for 1.

Table S2. The calculated results for Eu^{III} ions configuration of 1 by SHAPE 2.1 software.

Table S3. Comparison of detection capacity of 1 towards Fe^{3+} ion with other materials.

References

Fig. S1 Molecular stacking charts of 1.

Fig. S2 PXRD patterns of 1.

Fig. S3 TG curve for 1.

Fig. S4 PXRD patterns of 1 after being soaked in water.

Fig. S5 NMR spectrum of 1 after dissolving in MeOH.

Compound 1			
Eu(1)-O(1)	2.385(5)	Eu(1)-O(2)	2.373(5)
Eu(1)-O(3)	2.393(5)	Eu(1)-O(4)	2.437(5)
Eu(1)-O(5)	2.312(5)	Eu (1)-O(5)#1	2.313(4)
Eu(1)-N(1)	2.624(6)	Eu(1)-N(2)	2.609(6)
O(1)-Eu(1)-O(3)	137.29(17)	O(1)-Eu(1)-O(4)	71.98(16)
O(1)-Eu(1)-N(1)	82.05(16)	O(1)-Eu(1)-N(2)	140.49(18)
O(2)-Eu(1)-O(3)	72.27(17)	O(2)-Eu(1)-O(3)	80.94(16)
O(2)-Eu(1)-O(4)	79.92(17)	O(2)-Eu(1)-N(1)	147.41(18)
O(2)-Eu(1)-N(2)	147.08(18)	O(3)-Eu(1)-O(4)	71.00(16)
O(3)-Eu(1)-N(1)	106.56(16)	O(3)-Eu(1)-N(2)	73.24(18)
O(4)-Eu(1)-N(1)	73.17(18)	O(4)-Eu(1)-N(2)	109.57(17)
O(5)-Eu(1)-O(1)	78.38(16)	O(5) #1-Eu(1)-O(1)	121.73(15)
O(5)-Eu(1)-O(2)	115.03(16)	O(5) #1-Eu(1)-O(2)	77.82(17)
O(5)-Eu(1)-O(3)	144.10(17)	O(5) #1-Eu(1)-O(3)	82.63(16)
O(5)-Eu(1)-O(4)	140.70(16)	O(5) #1-Eu(1)-O(4)	147.74(18)
O(5) -Eu(1)-O(5) #1	70.80(19)	O(5)-Eu(1)-N(1)	77.74(16)
O(5) #1-Eu(1)-N(1)	133.99(18)	O(5)-Eu(1)-N(2)	78.18(17)
O(5) #1-Eu(1)-N(2)	78.91(17)	N(2)-Eu(1)-N(1)	62.14(17)
#1 1-X,1-Y,1-Z			

Table S1. Selected bond lengths (Å) and bond angles (°) for 1.

Table S2. The calculated results for Eu^{III} ions configuration of 1 by SHAPE 2.1 software.

Eu ^{III} ion geometry analysis of 1.						
IBPY-8 3 D6h Harsgonal bipyramid CU-9 4 Oh Cube SMPR-8 5 D44 Square antiprism TID-8 6 D24 Triangular dodecabedron JGBF-8 T D24 Johnson elongated triangular bipyramid J14 JBTBFY-8 9 C27 Biaugmented triangular bipyramid J14 JBTFP-8 9 C27 Biaugmented triangular bipyramid J14 JBTFP-8 10 C27 Biaugmented triangular bipyramid JBT-8 11 D44 Swub diphenoid J84 TIT-8 12 Td Triakis tetrahedron ETBFY-8 13 D58 Elongated triangular bipyramid						
Structure [MLS] HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBFY-8 JBTPR-8 BTPR-8 ABOXIT , 15.765, 9.160, 0.626, 2.420, 16.045, 28.065, 2.983, 2.489,	JSD-8 TT-8 ETBPY-8 5.294, 9.881, 23.701					
Configuration	ABOXIY, 1					
Hexagonal bipyramid (D _{6h})	15.765					
Cube (O_h)	9.160					
Square antiprism (D_{4d})	0.626					
Triangular dodecahedron (D_{2d})	2.420					
Johnson gyrobifastigium J26 (D _{2d})	16.045					
Johnson elongated triangular bipyramid J14 (D_{3h})	28.065					
Biaugmented trigonal prism J50 (C_{2v})	2.983					
Biaugmented trigonal prism (C_{2v})	2.489					
Snub siphenoid J84 (D _{2d})	5.294					
Triakis tetrahedron(T_d)	9.881					
Elongated trigonal bipyramid(D _{3h})	23.701					

Materials	Solvent	Detection Limit	Ref.
[Tb(tftba) _{1.5} (phen)(H ₂ O)] _n	Water	1.27 × 10 ⁻⁵ M	1
Eu-MOF	Water	1.5 × 10 ⁻⁵ M	2
[Tb(HL)(H ₂ O) ₂ (NO ₃)]·NO ₃	Water	1.6 × 10 ⁻⁵ M	3
[Tb(HL) _{1.5} (H ₂ O)(DMF)]·2H ₂ O	aqueous	2.0 × 10 ⁻⁵ M	4
[Eu ₂ (BTFA) ₄ (OMe) ₂ (dpq) ₂]	Water	3.5 × 10 ⁻⁵ M	This work
Eu ³⁺ @MIL-53-COOH (Al)	Water	5.0 × 10 ⁻⁵ M	5
BUT-15	Water	8.0 × 10 ⁻⁵ M	6
$[Eu(bpda)_{1.5}] \cdot H_2O_n$	Water	9.0 × 10 ⁻⁵ M	7
$\{[Cd_3(HL)_2(H_2O)_3]\cdot 3H_2O\cdot 2CH_3CN\}_n$	Water	9.06 × 10 ⁻⁵ M	8
$[Zn_5(hfipbb)_4(trz)_2(H_2O)_2]_n$	Water	$2.0 \times 10^{-4} \text{ M}$	9
${[Cd(5-asba)(bimbu)]}_n$	Water	1.87 × 10 ⁻⁴ M	10
EuL ₃	Ethanol	10 ⁻⁴ M	11
$Eu(acac)_{3} \subset Zn(C_{15}H_{12}NO_{2})_{2}$	DMF	5.0 × 10 ⁻³ M	12

Table S3. Comparison of detection capacity of 1 towards Fe³⁺ ion with other materials.

References:

(1) H.-H. Yu, J.-Q. Chi, Z.-M. Su, X. Li, J. Sun, C. Zhou and Q. Liu, *CrystEngComm.*, 2020, 3638-3643.

(2) W. Yang, J. Li, Z. Xu, J. Yang, Y. Liu and L. Liu, J. Mater. Chem. C., 2019, 7, 10297-10308.

(3) W. Gao, F. Liu, B.-Y. Zhang, X.-M. Zhang, J.-P. Liu, E.-Q. Gao and Q.-Y. Gao, *Dalton Trans.*, 2017, **46**, 13878-13887.

(4) F. Zhao, X.-Y. Guo, Z.-P. Dong, Z.-L. Liu and Y.-Q. Wang, *Dalton Trans.*, 2020, **47**, 8972-8982.

(5)Y. Zhou, H.-H. Chen and B. Yan, J. Mater. Chem. A., 2014, 2, 13691-13697.

(6) H.-J. Zhang, R.-Q. Fan, W. Chen, J.-Z. Fan, Y. W.-Dong, Y. Song, X.-Du, P. Wang and Y.

L. Yang, Cryst. Growth Des., 2016, 16, 5429-5440.

(7) J. Wang, J.-R. Wang, Y. Li, M. Jiang, L.-W. Zhang and P.-Y. Wu, New J. Chem., 2016, 40,

8600-8606.

(8) W. Q. Tong, W.-N. Liu, J. G. Cheng, P.-F. Zhang, G.-P. Li, L. Hou and Y.-Y. Wang, *Dalton Trans.*, 2018, **47**, 9466-9473.

(9) B.-L. Hou, D. Tian, J. Liu, L.-Z. Dong, S.-L. Li, D.-S. Li and Y.-Q. Lan, *Inorg. Chem.*, 2016, 55, 10580-10586.

(10) Y.-J. Yang, M.-J. Wang and K.-L. Zhang, J. Mater. Chem. C, 2016, 4, 11404-11418.

(11) M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, ACS Appl. Mater. Interfaces., 2013, 5, 1078-1083.

(12) Q. Tang, S. Liu, Y. Liu, J. Miao, S. Li, L. Zhang, Z. Shi and Z. Zheng, *Inorg. Chem.*, 2013, 52, 2799-2801.