Supporting Information Selective CO₂ reduction to HCOOH on a Pt/In₂O₃/g-C₃N₄ multifunctional visible-photocatalyst

Jiehong He, Pin Lv, Jian Zhu*, Hexing Li*

Education Ministry Key and International Joint Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
*Corresponding authors. Tel: +86 21 64322272; Fax: +86 21 64322272. *E-mail address*: hexing-li@shnu.edu.cn (Hexing Li) jianzhu@shnu.edu.cn (Jian Zhu)

Sample	In_2O_3 -content (%)		Pt-loading (%)	
	Theoretical	Real	Theoretical	Real
2Pt-In ₂ O ₃	98.04	/	1.96	1.92
$2Pt$ -g- C_3N_4	0	0	1.96	1.98
1Pt-10INCN	9.09	8.88	0.99	0.87
1.5Pt-10INCN	9.09	9.13	1.48	1.45
2Pt-10INCN	9.09	9.03	1.96	1.95
2.5Pt-10INCN	9.09	8.95	2.44	2.46
2Pt-5INCN	4.76	4.51	1.48	1.44
2Pt-15INCN	13.04	13.12	1.48	1.51
2Pt-20INCN	16.67	16.51	1.48	1.32
2Pt-10INCN-mix	9.09	9.12	1.48	1.44

Table S1 Theoretical and real In_2O_3 -content and Pt-loading in mass percentage.

	1	- 1	1
Catalyst	Surface area (m ² /g)	Pore Size (nm)	Pore volume (cm ³ /g)
In ₂ O ₃	31.18	21.18	0.039
$g-C_3N_4$	14.02	19.31	0.043
5INCN	32.51	11.97	0.169
10INCN	25.32	13.29	0.104
15INCN	23.84	15.82	0.170
20INCN	28.36	12.67	0.109
1Pt-10INCN	15.66	21.70	0.066
1.5Pt-10INCN	13.27	22.20	0.074
2Pt-10INCN	13.10	22.86	0.075
2.5Pt-10INCN	7.642	27.28	0.052
2Pt- In ₂ O ₃	10.33	24.06	0.061
$2Pt-g-C_3N_4$	6.980	27.58	0.048
2Pt-5INCN	18.64	23.95	0.112
2Pt-15INCN	11.20	22.60	0.065
2Pt-20INCN	11.03	22.01	0.073
2Pt-10INCN-mix	5.365	29.25	0.039

 $\label{eq:solution} \textbf{Table S2} \ Structural parameters \ determined \ from \ N_2 \ adsorption-desorption \ isotherms.$

Catalyst	Eg/eV	λ/nm
g-C ₃ N ₄	2.83	438
In_2O_3	2.91	426
5INCN	2.74	453
10INCN	2.75	451
15INCN	2.76	449
20INCN	2.77	448
$2Pt-g-C_3N_4$	2.73	454
2Pt-In ₂ O ₃	2.78	446
2Pt-5INCN	2.68	463
2Pt-10INCN	2.65	468
2Pt-15INCN	2.62	473
2Pt-20INCN	2.62	473

Table S3 Energy bandgap (Eg) and calculated light absorbance edge wavelength (λ).

Fig. S1 N_2 adsorption-desorption isotherms of pure In_2O_3 , pure $g-C_3N_4$ and their corresponding composites with or without Pt-loading.

Fig. S2 XPS spectra in (a) C 1s, (b) N 1s, (c) O 1s, (d) In 3d, and (e) Pt 4f levels.

Fig. S3 UV-Vis DRS spectra and plots of $(\alpha hv)^{1/2}$ vs. photon energy (hv).

Fig. S4 PL spectra obtained at λ_{ex} of 350 nm.

Fig. S5 Electrochemical impedance spectra.

Fig. S6 Photocurrent response spectra obtained under irradiation of a 300 W Xe lamp.

Fig. S7 Controlled experiments for the photocatalytic CO₂ reduction on 2Pt-10INCN. Reaction conditions: Four 3 W LED (420 nm), 35°C, 1 atm CO₂, 20 mg catalyst, 10 mL H₂O, 1 mL TEOA, 4 h.

Fig. S8 Effects of light source (a), reaction time (b) and CO_2 pressure (c, d) on the HCOOH and CH_4 yield during CO_2 photocatalytic reduction with different catalysts. Other reaction conditions are given in Fig. S7.

Fig. S9 XRD patterns of 2Pt-10INCN before and after recycling reactions

Scheme S1 A plausible reaction pathway for photocatalytic CO_2 reduction to HCOOH on Pt-INCN.