Electronic Supporting Information

Improvement in the thermoelectric performance of highly reproducible *n*-

type (Bi,Sb)₂Se₃ alloys by Cl-doping

Nadra Nasir^{a,†}, Kyu Hyoung Lee^{b,†}, Sang-il Kim^c, Hyun-Sik Kim^d, Jae-Hong Lim^e, Liangwei Fu^{a,*}, Sung Wng Kim^{a,e,*}

1. The lattice parameters of Cl-doped BiSbSe₃.

Figure S1. (a) One typical XRD refinement result of $BiSbSe_3$ sample. (b) The change in lattice parameters (*a*, *b*, and *c*) of orthorhombic $BiSbSe_3$ by Cl-doping.

2. Microstructure analysis for the SPSed BiSbSe_{3-y}Cl_y (y = 0, 0.12, 0.18, 0.24) and Bi_{1.2}Sb_{0.8}Se_{3-z}Cl_z (z = 0, 0.12, 0.18, 0.24) samples.

Figure S2. SEM images of fractured surfaces for the SPSed BiSbSe_{3-y}Cl_y (y = 0, 0.12, 0.18, 0.24) and Bi_{1.2}Sb_{0.8}Se_{3-z}Cl_z (z = 0, 0.12, 0.18, 0.24).

3. The mole fraction of rhombohedral phase in $Bi_{1,2}Sb_{0.8}Se_{3-z}Cl_z$ (z = 0, 0.12, 0.18, 0.24). Table S1. The mole fraction of rhombohedral phase in $Bi_{1,2}Sb_{0.8}Se_{3-z}Cl_z$ (z = 0, 0.12, 0.18, 0.24), which is calculated by Rietveld refinement. The relative densities of the samples measured by the Archimedes principle (AlfaMiracle, MD-300S) are also shown.

Compositions (nominal)	Mole fraction		Delative density (9/)
	Rhombohedral	Orthorhombic	Relative density (%)
$Bi_{1.2}Sb_{0.8}Se_3$	0.743	0.257	97.4%
Bi _{1.2} Sb _{0.8} Se _{2.88} Cl _{0.12}	0.744	0.256	97.4%
Bi _{1.2} Sb _{0.8} Se _{2.82} Cl _{0.18}	0.745	0.255	95.5%
Bi _{1.2} Sb _{0.8} Se _{2.76} Cl _{0.24}	0.747	0.253	97.1%

Figure S3. (a) One typical XRD refinement result of $Bi_{1,2}Sb_{0,8}Se_3$ sample. (b) The change in lattice parameters of rhombohedral (*a* and *c*) and orthorhombic (*a*, *b*, and *c*) phases of $Bi_{1,2}Sb_{0,8}Se_3$ by Cl-doping.

5. Phase formation in Bi_{1.2}Sb_{0.8}Se_{2.7}Cl_{0.3}.

Figure S4. XRD pattern of SPSed Bi_{1.2}Sb_{0.8}Se_{2.7}Cl_{0.3}.

6. Calculation of electronic thermal condutivity

The electronic thermal conductivity (κ_{ele}) is estimated by the Wiedemann-Franz law ($\kappa_{ele} = L\sigma T$, where *L*, σ , and *T* are the Lorenz number, electrical conductivity, and the absolute temperature). Temperature dependent *L* is obtained by using Eq. S1 assuming a single parabolic band model [1].

$$L = 1.5 + \exp\left(-\frac{|S|}{116}\right) \tag{S1}$$

Figure S5 shows the temperature dependences of L for Cl-doped BiSbSe₃ and Bi_{1.2}Sb_{0.8}Se₃.

Figure S5. Temperature dependences of L for Cl-doped BiSbSe₃ and $Bi_{1,2}Sb_{0,8}Se_3$.

References

[1] H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, APL Mater. 3 (2015) 041506.