Synthesis and characterization of lead iodovanadinite using PdI_{2} , an iodine source for the immobilisation of radioiodine

E. V. Johnstone, a,b D. J. Bailey, a S. Lawson, a M. C. Stennett, a C. L. Corkhill, a

M. Kim,^{a,c,d} J. Heo,^{c,d} D. Matsumura,^e N. C. Hyatt^{a*}

^a University of Sheffield, Materials Science and Engineering Department, Sheffield, S1 3JD, UK.

^b Current affiliation: Innovative Fuel Solutions, LLC., North Las Vegas, NV, USA.

^c Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, South Korea.

^d Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, South Korea.

^e Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148, Japan.

Figure S1. SEM-BSE image (x2000 magnification) and EDX elemental distribution plots for Pb, V, Pd, and I of a sectioned pellet of PdPb₉(VO₄)₆I₂ reacted at 700 °C for 5 hr. Scale bar shown at bottom of SEM image represents 30 μ m. EDX spectrum corresponds to field of view in SEM-BSE and element distribution maps.

Figure S2. EDX spectra corresponding to field of view in SEM-BSE and element distribution maps in: a) Figure 2, b) Figure 7, c) Figure 12, d) Figure 13.

Figure S3. Linear combination fits to Pd L₃ XANES data from "PdPb₉(VO₄)₆I₂" produced by conventional solid state reaction (500°C ST) or High Energy Ball Milling (HEBM), with data shown for initial reaction mixture (HEBM 0hr), after 20 h (HEBM t = 20 hr), and after subsequent reaction at 500°C (HEBM 500°C); plus reference compounds of Pd, PdI₂ and PdO.

Figure S4. TEM-EDX spectrum of a single-grain of "PdPb₉(VO₄)₆I₂" reacted at 500 °C for 5 hr yielding peaks for Pb, Pd, V, O, and I..

Figure S5. Expert from the PXRD patterns of batched β -Pb₃(VO₄)₂ and PdI₂ subjected to HEBM after t = 5, 10, 20, and 30 hr showing the amorphization and peak shift of the most intense reflections between $2\theta = 27$ to 33° .

Figure S6. TEM-EDX spectrum of a single-grain of HEBM "PdPb₉(VO₄)₆I₂" reacted at 500 °C for 1 hr yielding peaks for Pb, Pd, V, O, and I.

Figure S7. TGA-DTA analysis of "PdPb₉(VO₄)₆I₂" subjected to HEBM 30 hr and reacted at 200 °C for 1 hr in a sealed vessel under vacuum.