Multifunctional Biphenyl Derivatives As Photosensitizers In Various Types Of Photopolymerization Processes, Including IPNs Formation, 3D Printing And The Manufacture Of Photo-Curable CNTs Composites

Wiktoria Tomal ${ }^{1}$, Anna Chachaj-Brekiesz ${ }^{3}$, Roman Popielarz ${ }^{1}$, Joanna Ortyl* ${ }^{\star 1,2}$

[^0]* Correspondance: jortyl@pk.edu.pl

Synthesis of 2-(diethylamino)-4-(1-ethylpropyl)-6-phenyl-benzene-1,3-dicarbonitrile derivatives

Materials and methods

2-amino-4-methyl-6-arylbenzene-1,3-dicarbonitrile derivatives used for synthesis of target compounds were obtained following recently published procedure ${ }^{1}$. N, N-dimethylformamide was dried over freshly activated $4 \AA$ molecular sieves. Other reagents for synthesis were supplied from commercial sources and used without any further purification.

Structure and purity of synthesised compounds was confirmed with nuclear magnetic resonance spectra, mass spectrometry and liquid chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO-D D_{6} on Advance III HD 400 MHz (Bruker) spectrometer. Chemical shifts were reported in parts per million (δ) and referenced to residual protonated solvent peak ($\delta=2.50 \mathrm{ppm}$ in ${ }^{1} \mathrm{HNMR}$ or $\delta=39.52 \mathrm{ppm}$ in ${ }^{13} \mathrm{CNMR}$). LC-MS analyses were obtained on LCMS-2020 (Shimadzu) with ESI ionization method.

General synthetic procedure for 2-(diethylamino)-4-(1-etylpropyl)-6-phenylbenzene-1,3-dicarbonitrile derivatives

$\mathrm{R}=$ phenyl $(\mathrm{BI}-\mathrm{PH})$, phenyl- $\mathrm{CH}_{3}\left(\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}\right)$, phenyl- $\mathrm{O}-\mathrm{CH}_{3}\left(\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}\right)$, phenyl-CN
(BI-PH-CN), phenyl- $\mathrm{SO}_{2} \mathrm{CH}_{3}\left(\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$,
phenyl-S-CH $\left(\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}\right)$, phenyl- CF_{3}
(BI-PH-CF ${ }_{3}$), 1-naphtyl ($\mathrm{BI}-1-\mathrm{NPH}$), 2-naphtyl
(BI-2-NPH), 9-anthyl (BI-9-AN)

The solution of appropriate 2-amino-4-methyl-6-arylbenzene-1,3-dicarbonitrile derivative (0.50 mmol) in N, N dimethylformamide (2.0 mL) was added dropwise to the suspension of 60% sodium hydride ($4.00 \mathrm{mmol}, 160 \mathrm{mg}$) in N, N-dimethylformamide (2.0 mL). The resulting brownish suspension was stirred under nitrogen for 20 minutes. Then iodoethane ($312 \mathrm{mg}, 2.00 \mathrm{mmol}$) was added and stirring was continued. When thin layer chromatography showed no traces of 2-amino-4-methyl-6-arylbenzene-1,3-dicarbonitrile (usually after 1 h 40 min) water (10 mL) was added. The product was isolated by extraction with chloroform and purified by column chromatography on silica gel using chloroform as eluent.

Physicochemical data for synthesized 2-(diethylamino)-4-(1-ethylpropyl)-6-phenylbenzene-1,3dicarbonitrile derivatives

BI-PH 2-(diethylamino)-4-(1-ethylpropyl)-6-phenylbenzene-1,3-dicarbonitrile	Obtained from 2-amino-4-methyl-6-phenylbenzene-1,3-dicarbonitrile (117 mg) in 140 mg (81%) yield. Purity (LC): 96% ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~s}$, $1 \mathrm{H}), 3.48(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 157.78,155.79,150.27,137.09,129.42,129.00$, $128.63,123.10,116.64,116.13,111.97,108.81,47.38,46.88,27.86,13.47,11.84$. MS (ESI), m/z (\%): $346\left(100 \%,[M+H]^{+}\right)$
$\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylphenyl)benzene-1,3dicarbonitrile	Obtained from 2-amino-4-(4-methylphenyl)-6-methyl-benzene-1,3-dicarbonitrile $(124 \mathrm{mg})$ in $100 \mathrm{mg}(56 \%)$ yield. Purity (LC): 99\% ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}$, $1 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.58(\mathrm{~m}, 4 \mathrm{H})$, $1.08(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 157.82,155.69,150.28,139.21,134.20,129.22$, 128.92, 122.96, 116.76, 116.19, 111.70, 108.70, 47.35, 46.88, 27.88, 20.81, 13.48, 11.85. MS (ESI), m/z (\%): 360 ($\left.100 \%,[M+H]^{+}\right)$
$\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}$ 2-(diethylamino)-6-(1-ethylpropyl)-4-(4-methoxyphenyl) benzene-1,3dicarbonitrile	Obtained from 2-amino-4-(4-methoxyphenyl)-6-methyl-benzene-1,3-dicarbonitrile (132 mg) in $80 \mathrm{mg}(43 \%)$ yield. Purity (LC): 87% ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}$, 2 H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.61(\mathrm{~m}, 4 \mathrm{H})$, $1.07(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 160.32,157.88,155.57,149.99,130.52,129.19$, 122.83, 116.90, 116.24, 114.10, 111.33, 108.57, 55.36, 47.33, 46.87, 27.88, 13.48, 11.85. $\text { MS (ESI), m/z (\%): } 376 \text { (100\%, [M+H]+ })$
BI-PH-CN 4-(4-cyanophenyl)-2-(diethylamino)-6-(1-ethylpropyl)benzene-1,3dicarbonitrile	Obtained from 2-amino-4-(4-cyanophenyl)-6-methyl-benzene-1,3-dicarbonitrile $(129 \mathrm{mg})$ in $110 \mathrm{mg}(59 \%)$ yield. Purity (LC): 99\% ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.06-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (s, $1 \mathrm{H}), 3.49(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.94-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 157.77,156.19,148.45,141.59,132.47,130.18$, 122.98, 118.39, 116.37, 116.00, 112.57, 112.09, 108.59, 47.48, 46.81, 27.84, 13.45, 11.85. MS (ESI), m/z (\%): 371 ($\left.100 \%,[M+H]^{+}\right)$
$\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$	Obtained from 2-amino-4-methyl-6-(4-methylsulfonylphenyl)benzene-1,3-

	dicarbonitrile (156 mg) in 154 mg (73\%) yield.
	Purity (LC): 86\%
	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.12-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}$, 1 H), $3.50(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}$), $3.33(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.62(\mathrm{~m}$, $4 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfonylphenyl)benzene-1,3-dicarbonitrile	$\begin{aligned} & \left.{ }^{13} \mathrm{C} \text { NMR (} 101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 157.79,156.17,148.53,141.94,141.49,130.17 \text {, } \\ & \text { 127.15, 123.15, 116.40, 116.01, 112.59, 108.64, 47.47, 46.83, 43.29, 27.85, 13.47, } \\ & \text { 11.87. } \end{aligned}$
	MS (ESI), m/z (\%): 424 (100\%, [M+H] ${ }^{+}$)
$\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$	Obtained from 2-amino-4-methyl-6-(4-methylsulfanylphenyl)benzene-1,3dicarbonitrile $(143 \mathrm{mg})$ in $100 \mathrm{mg}(51 \%)$ yield.
2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfanylphenyl)benzene-1,3-dicarbonitrile	Purity (LC): 99\%
	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~s}$, $1 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.60(\mathrm{~m}$, $4 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
	${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) δ 157.89, 155.76, 149.72, 140.55, 133.18, 129.49, 125.49, 122.83, 116.76, 116.19, 111.65, 108.52, 47.36, 46.86, 27.87, 14.28, 13.48, 11.85.
	MS (ESI), m/z (\%): 392 (100\%, [M+H] ${ }^{+}$)
$\mathrm{BI}-\mathrm{PH}^{\text {- }} \mathrm{CF}_{3}$	Obtained from 2-amino-4-methyl-6-[4-(trifluoromethyl)phenyl]benzene-1,3dicarbonitrile $(151 \mathrm{mg})$ in $60 \mathrm{mg}(29 \%)$ yield.
2-(diethylamino)-4-(1-ethylpropyl)-6-[4-(trifluoromethyl)phenyl]benzene -1,3-dicarbonitrile	Purity (LC): 95\%
	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}$, $1 \mathrm{H}), 3.49(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
	${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 157.74,156.15,148.72,141.14$ ($\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}$), $130.08,129.62(q, J=32.0 \mathrm{~Hz}), 125.47(q, J=3.6 \mathrm{~Hz}), 123.12,125.05(q, J=$ $272.5 \mathrm{~Hz}), 116.42,116.02,112.53,108.72,47.46,46.84,27.85,13.46,11.85$.
	MS (ESI), m/z (\%): 414 (100\%, [M+H] ${ }^{+}$)
Bl-1-NPH	Obtained from 2-amino-4-methyl-6-(1-naphthyl)benzene-1,3-dicarbonitrile (142 mg) in $160 \mathrm{mg}(81 \%)$ yield.
	Purity (LC): 92%
2-(diethylamino)-4-(1-ethylpropyl)-6-(1-naphthyl)benzene-1,3dicarbonitrile	${ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 8.11-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.39$ (m, 1H), $7.34(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.57(\mathrm{~m}$, $4 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.87-0.75(\mathrm{~m}, 6 \mathrm{H})$.
	${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) δ 157.21, 155.64, 149.27, 135.02, 133.12, 130.49, $129.40,128.58,127.35,127.19,126.35,125.33,124.68,124.26,116.11,115.98$, 112.65, 110.71, 47.29, 46.92, 27.91, 27.68, 13.45, 11.85, 11.76.
	MS (ESI), m/z (\%): 396 (100\%, [M+H] ${ }^{+}$)
BI-2-NPH	Obtained from 2-amino-4-methyl-6-(2-naphthyl)benzene-1,3-dicarbonitrile (142

min) in $129 \mathrm{mg}(65 \%)$ yield.
Purity (LC): 97%

NMR spectra for 2-(diethylamino)-4-(1-ethylpropyl)-6-phenylbenzene-1,3-dicarbonitrile derivatives

Figure S1. ${ }^{1} \mathrm{HNMR}$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-phenylbenzene-1,3-dicarbonitrile (BI-PH).

Figure S2. ${ }^{13}$ CNMR of 2-(diethylamino)-4-(1-ethylpropyl)-6-phenylbenzene-1,3-dicarbonitrile (BI-PH).

Figure S3. ${ }^{1}$ HNMR of 2-(diethylamino)-4-(1-ethylpropyl)- 6 -(4-methylphenyl)benzene-1,3-dicarbonitrile (BI-PH-CH ${ }_{3}$).

Figure S4. ${ }^{13}$ CNMR of 2-(diethylamino)-4-(1-ethylpropyl)- 6 -(4-methylphenyl)benzene-1,3-dicarbonitrile (BI-PHCH_{3}).

Figure S5. ${ }^{1} \mathrm{HNMR}$ of 2-(diethylamino)-6-(1-ethylpropyl)-4-(4-methoxyphenyl) benzene-1,3-dicarbonitrile (BI-PH-OCH_{3}).

Figure S7. ${ }^{1}$ HNMR of 4-(4-cyanophenyl)-2-(diethylamino)-6-(1-ethylpropy))benzene-1,3-dicarbonitrile (BI-PH-CN).

Figure S8. ${ }^{13} \mathrm{CNMR}$ of 4-(4-cyanopheny)-2-(diethylamino)-6-(1-ethylpropyl)benzene-1,3-dicarbonitrile (BI-PH-CN).

Figure S9. ${ }^{1} \mathrm{HNMR}$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfonylphenyl)benzene-1,3-dicarbonitrile ($\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$).

Figure S10. ${ }^{13} \mathrm{CNMR}$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfonylphenyl)benzene-1,3-dicarbonitrile (Bl-PH-SO $2-\mathrm{CH}_{3}$).

Figure S11. ${ }^{1} \mathrm{HNMR}$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfanylphenyl)benzene-1,3-dicarbonitrile (BI-PH-S-CH3).

Figure S12. ${ }^{13}$ CNMR of 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfanylphenyl)benzene-1,3-dicarbonitrile (BI-PH-S-CH3).

Figure S13. ${ }^{1} H N M R$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-[4-(trifluoromethyl)phenyl]benzene-1,3-dicarbonitrile (Bl-PH-CF3).

Figure 14. ${ }^{13} \mathrm{CNMR}$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-[4-(trifluoromethyl)phenyl]benzene-1,3-dicarbonitrile ($\mathrm{Bl}-\mathrm{PH}-\mathrm{CF}_{3}$).

Figure S15. ${ }^{1}$ HNMR of 2-(diethylamino)-4-(1-ethylpropyl)-6-(1-naphthyl)benzene-1,3-dicarbonitrile (BI-1-NPH).

Figure S16. ${ }^{13}$ CNMR of 2-(diethylamino)-4-(1-ethylpropyl)-6-(1-naphthyl)benzene-1,3-dicarbonitrile (BII-1-NPH).

Figure S17. ${ }^{1}$ HNMR of 2-(diethylamino)-4-(1-ethylpropyl)-6-(2-naphthyl)benzene-1,3-dicarbonitrile (BII-2-NPH).

Figure S18. ${ }^{13} \mathrm{CNMR}$ of 2-(diethylamino)-4-(1-ethylpropyl)-6-(2-naphthyl)benzene-1,3-dicarbonitrile (BI-2-NPH).

Figure S19. ${ }^{1}$ HNMR of 4-(9-anthry)-2-(diethylamino)-6-(1-ethylpropyl)benzene-1,3-dicarbonitrile (BI-1-AN).

Structure of compounds used in this study

CADE

Bis-GMA

TEGDMA

Speedcure 938

EDB

Figure $\mathbf{S 2 0}$. Structure of compounds used in the study.

Figure S23: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ oxidation in acetonitrile.

Figure S25: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}$ oxidation in acetonitrile.

Figure S27: Cyclic voltammogram curves of the BI-PH-CN oxidation in acetonitrile.

Figure S24: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ reduction in acetonitrile.

Figure S26: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}$ reduction in acetonitrile.

Figure S28: Cyclic voltammogram curves of the BI-PH-CN reduction in acetonitrile.

Figure S29: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}_{-} \mathrm{SO}_{2}-\mathrm{CH}_{3}$ oxidation in acetonitrile.

Figure S31: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$ oxidation in acetonitrile.

Figure S33: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}_{-C F}^{3}$ oxidation in acetonitrile.

Figure S30: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$ reduction in acetonitrile.

Figure S32: Cyclic voltammogram curves of the

Figure S34: Cyclic voltammogram curves of the $\mathrm{BI}-\mathrm{PH}-\mathrm{CF}_{3}$ reduction in acetonitrile.

Figure S35: Cyclic voltammogram curves of the BI-1-NPH oxidation in acetonitrile.

Figure S37: Cyclic voltammogram curves of the BI-2-NPH oxidation in acetonitrile.

Figure S39: Cyclic voltammogram curves of the
BI-1-AN oxidation in acetonitrile.

Figure S36: Cyclic voltammogram curves of the $\mathrm{BI}-1-\mathrm{NPH}$ reduction in acetonitrile.

Figure S38: Cyclic voltammogram curves of the BI-2-NPH reduction in acetonitrile.

Figure S40: Cyclic voltammogram curves of the BI-1-AN reduction in acetonitrile.

Absorption and fluorescence spectra for the determination of the excited singlet state energy for investigated of 2-(diethylamino)-4-methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives in acetonitrile.

Figure S41: Excitation and emission spectra for the determination of the excited singlet state energy for BI-PH derivative.

Figure S43: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}$ derivative.

Figure S42: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ derivative.

Figure S44: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-\mathrm{PH}-\mathrm{CN}$ derivative.

Figure S45: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$ derivative.

Figure S47: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-\mathrm{PH}-\mathrm{CF}_{3}$ derivative.

Figure S49: Excitation and emission spectra for the determination of the excited singlet state energy for BI-2-NPH derivative.

Figure S46: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$ derivative.

Figure S48: Excitation and emission spectra for the determination of the excited singlet state energy for $\mathrm{BI}-1-\mathrm{NPH}$ derivative.

Figure S50: Excitation and emission spectra for the determination of the excited singlet state energy for BI-1-AN derivative.
methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives free molecules determined with the use of uB3LYP/6-31G* level of theory

Compound	HOMO	LUMO
 2-(diethylamino)-6-(1-ethylpropyl)-4-(4methoxyphenyl) benzene-1,3-dicarbonitrile		
BI-PH-CN		
$\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$ 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfonylphenyl)benzene-1,3-dicarbonitrile		

$\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$ 2-(diethylamino)-4-(1-ethylpropyl)-6-(4-methylsulfanylpheny)benzene-1,3-dicarbonitrile		
$\mathrm{BI}-2$-NPH 2-(diethylamino)-4-(1-ethylpropy)-6-(2-naphthy))benzene-1,3-dicarbonitrile	ces	
BI-1-AN 4-(9-anthry))-2-(diethylamino)-6-(1-ethy\|propyl)benzene-1,3-dicarbonitrile		

Fluorescence quenching with Speedcure 938 (lod) of investigated 2-(diethylamino)-4-methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives together with Stern-Volmer correlation

Figure S51: Fluorescence quenching of BI-PH.

Figure S53: Fluorescence quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$.

Figure S55: Fluorescence quenching of BI-PH-O-CH3.

Figure S52: Stern-Volmer plots for the fluorescence quenching of BI-PH by lod. Solvent acetonitrile.

Figure S54: Stern-Volmer plots for the fluorescence quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ by lod. Solvent acetonitrile.

Figure S56: Stern-Volmer plots for the fluorescence

Figure S587: Fluorescence quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$.

Figure S59: Fluorescence quenching of BI-PH-CN.

Figure S61: Fluorescence quenching of BI-PH-S-CH3.
quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}$ by lod. Solvent acetonitrile.

Figure S58: Stern-Volmer plots for the fluorescence quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$ by lod. Solvent acetonitrile.

Figure $\mathbf{S 6 0}$: Stern-Volmer plots for the fluorescence quenching of BI-PH-CN by lod. Solvent acetonitrile.

Figure S62: Stern-Volmer plots for the fluorescence quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$ by lod. Solvent acetonitrile.

Figure S63: Fluorescence quenching of BI-PH-CF3.

Figure S65: Fluorescence quenching of BI-1-NPH.

Figure S67: Fluorescence quenching of BI-2-NPH.

Figure S64: Stern-Volmer plots for the fluorescence quenching of $\mathrm{BI}-\mathrm{PH}-\mathrm{CF}_{3}$ by lod. Solvent acetonitrile.

Figure S66: Stern-Volmer plots for the fluorescence quenching of BI-1-NPH by lod. Solvent acetonitrile.

Figure S68: Stern-Volmer plots for the fluorescence quenching of BI-2-NPH by lod. Solvent acetonitrile.

Figure S69: Fluorescence quenching of BI-1-AN.

Figure S70: Stern-Volmer plots for the fluorescence quenching of BI-1-AN by lod. Solvent acetonitrile.

Figure S71: Photolysis of BI-PH in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S73: Photolysis of $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S72: Photolysis of BI-PH + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol}^{3} / \mathrm{dm}^{3}\right]$) in ACN under 365nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S74: Photolysis of BI-PH-CH 3 + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$)

Figure S75: Photolysis of BI-PH-O-CH3 in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S77: Photolysis of BI-PH-CN in ACN under 365nm $\left(190 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Figure S79: Photolysis of $\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$ in ACN under $365 \mathrm{~nm}\left(190 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Figure S76: Photolysis of BI-PH-O-CH3 + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol}^{2} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S78: Photolysis of BI-PH-CN + Speedcure 938
(concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S80: Photolysis of BI-PH-SO $\mathrm{S}_{2}-\mathrm{CH}_{3}+$ Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm (190mW/cm²).

Figure S81: Photolysis of $\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$ in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S83: Photolysis of $\mathrm{BI}-\mathrm{PH}_{-\mathrm{CF}_{3}}$ in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S85: Photolysis of BI-1-NPH in ACN under 365nm (190mW/cm²).

Figure S82: Photolysis of BI-PH-S-CH3 + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm $\left(190 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Figure S84: Photolysis of BI-PH-CF 3 + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S86: Photolysis of BI-1-NPH + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol}^{3} / \mathrm{dm}^{3}\right]$) in ACN under 365nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S87: Photolysis of BI-2-NPH in ACN under 365nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S89: Photolysis of BI-1-AN in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S88: Photolysis of BI-2-NPH + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol}^{2} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S90: Photolysis of BI-1-AN + Speedcure 938 (concentration: $1,59 \cdot 10^{-3}\left[\mathrm{~mol} / \mathrm{dm}^{3}\right]$) in ACN under 365 nm ($190 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S91: Fluorescence lifetime decay curves of BI-PH derivative with excitation pulse at 320 nm in ACN.

Figure S93: Fluorescence lifetime decay curves of $\mathrm{BI}-\mathrm{PH}-\mathrm{O}-\mathrm{CH}_{3}$ derivative with excitation pulse at 320 nm in ACN.

Figure S92: Fluorescence lifetime decay curves of $\mathrm{BI}-\mathrm{PH}-\mathrm{CH}_{3}$ derivative with excitation pulse at 320 nm in ACN.

Figure S94: Fluorescence lifetime decay curves of BI-PH-CN derivative with excitation pulse at 320 nm in ACN.

Figure S95: Fluorescence lifetime decay curves of $\mathrm{BI}-\mathrm{PH}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$ derivative with excitation pulse at 320 nm in ACN.

Figure S97: Fluorescence lifetime decay curves of $\mathrm{BI}-\mathrm{PH}_{-}-\mathrm{CF}_{3}$ derivative with excitation pulse at 320 nm in ACN.

Figure S99: Fluorescence lifetime decay curves of BI-2-NPH derivative with excitation pulse at 320 nm in ACN.

Figure S96: Fluorescence lifetime decay curves of $\mathrm{BI}-\mathrm{PH}-\mathrm{S}-\mathrm{CH}_{3}$ derivative with excitation pulse at 320 nm in ACN.

Figure S98: Fluorescence lifetime decay curves of $\mathrm{BI}-1-\mathrm{NPH}$ derivative with excitation pulse at 320 nm in ACN.

Figure S100: Fluorescence lifetime decay curves of BI-1-AN derivative with excitation pulse at 320 nm in ACN.

Free-radical photopolymerization profile under irradiation at $365 \mathrm{~nm}\left(3.77 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Figure S101: Free-radical photopolymerization profiles (double bond conversion vs. irradiation time) initiated by twocomponent photoinitiating system based on Speedcure 938 (1% wt.) and 2-(diethylamino)-4-methyl-6-phenyl-benzene-1,3dicarbonitrile derivatives ($0.1 \% \mathrm{wt}$.) under air and irradiation at $365 \mathrm{~nm}\left(3.77 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Cationic photopolymerization profile under irradiation at @ $365 \mathrm{~nm}\left(3.77 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Figure S102: Cationic photopolymerization profiles (epoxy function conversion vs. irradiation time) initiated by twocomponent photoinitiating system based on Speedcure 938 (1\% wt.) and 2-(diethylamino)-4-methyl-6-phenyl-benzene-1,3dicarbonitrile derivatives (0.1% wt.) under irradiation at $365 \mathrm{~nm}\left(3.77 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Polymerization profiles during profile during the formation of interpenetrating polymer networks under irradiation at @365 nm ($3.77 \mathrm{~mW} / \mathrm{cm}^{2}$) for monomer TRITHIOL and TRIVNYL

Figure S103: Values of conversion of formation IPNs from monomer TRITHIOL and TRIVINYL ($0,21: 0,79 \mathrm{w} / \mathrm{w}$) in the air at $365 \mathrm{~nm}\left(3.77 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Polymerization profiles during the formation of interpenetrating polymer networks in various in different measurement conditions for monomer CADE, TMPTA and M100

Figure S104: Polymerization profiles carried out in laminate, for the system: CADE/TMPTA (1:1 \% wt.),

+ biphenyl derivatives/lod (0.3/1 \%w/w) under irradiation at @ nm ($3,77 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S105: Polymerization profiles carried out in laminate, for the system: CADE/TMPTA (1:1 \% wt.),

+ biphenyl derivatives/lod (0.3/1 \%w/w) under irradiation at @405 nm (19.82 mW/cm²).

Figure S106: Polymerization profiles carried out in the air, for the system: CADE/TMPTA (1:1 \% wt.), + biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @ nm ($3,77 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S108: Polymerization profiles carried out in thick layer, for the system: CADE/TMPTA (1:1 \% wt.),

+ biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$)
under irradiation at @ $\mathrm{nm}\left(3,77 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

Figure S110: Polymerization profiles carried out in laminate,

Figure S107: Polymerization profiles carried out in the air, for the system: CADE/TMPTA (1:1 \% wt.),

+ biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @405 nm ($19.82 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S109: Polymerization profiles carried out in thick layer, for the system: CADE/TMPTA (1:1 \% wt.),

+ biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @405 nm ($19.82 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S111: Polymerization profiles carried out in laminate,
for the system: CADE/TMPTA/M100 (1:1:1 \% wt.), + biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @ nm ($3,77 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S112: Polymerization profiles carried out in the air, for the system: CADE/TMPTA/M100 (1:1:1 \% wt.), + biphenyl derivatives/lod (0.3/1 \%w/w) under irradiation at @ nm ($3,77 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S114: Polymerization profiles carried out in thick layer, for the system: CADE/TMPTA/M100 (1:1:1 \% wt.), + biphenyl derivatives/lod (0.3/1 \%w/w) under irradiation at @ nm (3,77mW/cm²).
for the system: CADE/TMPTA/M100 (1:1:1 \% wt.),

+ biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @405 nm ($19.82 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S113: Polymerization profiles carried out in the air, for the system: CADE/TMPTA/M100 (1:1:1 \% wt.),

+ biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @405 nm ($19.82 \mathrm{~mW} / \mathrm{cm}^{2}$).

Figure S115: Polymerization profiles carried out in thick layer, for the system: CADE/TMPTA/M100 (1:1:1 \% wt.), + biphenyl derivatives/lod ($0.3 / 1 \% \mathrm{w} / \mathrm{w}$) under irradiation at @405 nm ($19.82 \mathrm{~mW} / \mathrm{cm}^{2}$).

Transmittance spectrum of thin layer of resin with different content od MWCNTs

Figure S116:. Transmittance spectrum of thin layer of resin with different content od MWCNTs ($0.1 ; 0.25 ; 0.5 \mathrm{wt}$. \%), without photoinitiating system. The experiment was performed using UV-VIS Spectrophotometer UV-2600i (from Shimadzu).

Photo-differential scanning calorimetry

Figure S117:. Free-radical photopolymerization profiles for photocurable composites: BI-PH-O-CH3 (0,1\% wt.), polymerized at 365 nm (BisGMA) / (TEGDMA) (50 $\% / 50 \% \mathrm{w} / \mathrm{w})$ with Speedcure $938(1 \% \mathrm{wt}$.$) a) at 25^{\circ} \mathrm{C}$, b) at $70^{\circ} \mathrm{C}$.

Figure S118: Free-radical photopolymerization profiles for photocurable composites: BI-PH-CN (0.1 \%wt.), (BisGMA) / (TEGDMA) ($50 \% / 50 \%$ w/w) with $\operatorname{EDB}\left(1.5 \%\right.$ wt.) a) at $25^{\circ} \mathrm{C}$, b) at $70^{\circ} \mathrm{C}$.

[^0]: 1 Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
 ${ }^{2}$ Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
 ${ }^{3}$ Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Cracow, Poland

