Efficient electrocatalyst of α -Fe₂O₃ nanorings for oxygen evolution reaction in acidic condition

Xiaolei Liang,^{a, b} Jinmei Qian,^b Yonggang Liu,^b Zhengmei Zhang,^b Daqiang Gao^{b*}

^aDepartment of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, China.

^bKey Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, China

*E-mail: gaodq@lzu.edu.cn

Figure S1. The SEM image of α -Fe₂O₃ NRs.

Figure S2. The HRTEM images of bulk α -Fe₂O₃.

Figure S3. The length (a) and dimeter (b) of nanorings of α -Fe₂O₃ NRs.

Figure S4. The HRTEM images of α -Fe₂O₃ NRs with perpendicular to (a-c) and along the nanoring direction (d).

Figure S5: WT for the k^3 -weighted EXAFS signals for (a) bulk α -Fe₂O₃ and (b) α -Fe₂O₃ NRs.

Figure S6. The XPS results of O 1s for bulk α -Fe₂O₃ and α -Fe₂O₃ NRs, where the peaks of bulk α Fe₂O₃ shift to higher binding energy (\sim 0.3 eV).

Figure S7. The Mossbauer spectrum of bulk α -Fe₂O₃.

Figure S8. LSV curves of α -Fe₂O₃ NRs electrocatalyst based on glassy carbon support and carbon cloth support.

Figure S9. The LSV curve of α -Fe₂O₃NRs electrocatalyst free substrate.

Figure S10. (a) The TOF curves of the α -Fe₂O₃ NRs and bulk α -Fe₂O₃ ($TOF = j \times S/4 \times F \times n$, where j is the measured current density, S is the electrode geometric area, F is the Faraday's constant of 96485.3 C mol⁻¹, n is the moles of coated Fe atom on the electrode). (b) LSV curves of α -Fe₂O₃ NRs before and after stability test of 10000 cycles and (c) I-t curve of α -Fe₂O₃ NRs.

Table	S1.	EXAFS	fitting	parameters	at	the	Fe	K-edge	for	bulk	α -Fe ₂ O ₃	and	(b)	α -Fe ₂ O ₃
NRs.	$(S_0^2 =$	=0.70)												

Sample	Shell	Na	$R(\text{\AA})^b$	$\sigma^2 \times 10^3 (\text{\AA}^2)^c$	$\Delta E_0 ({ m eV})^d$	R factor
bulk a-	Fe-O	6.0±1.3	1.96±0.02	12.0±2.5	-7.9±3.0	
Fe ₂ O ₃	Fe-Fe	6.7±1.1	2.99±0.01	9.2±1.3	3.1±1.7	0.010
	Fe-Fe	3.0±0.9	3.67±0.01	2.9±1.6	6.7±1.1	
a-Fe2O2	Fe-O	6.2±1.5	1.96±0.02	12.0±2.7	-9.0±3.3	
NRs	Fe-Fe	6.8±1.1	3.00±0.01	8.6±1.2	3.3±1.7	0.010
	Fe-Fe	3.3±0.9	3.67±0.01	2.5±1.5	-8.9±2.6	

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit.

Sample	Isomer shift (mm)	Magnetic field (T)
Bulk α-Fe ₂ O ₃	0.36432	50.40895
α-Fe ₂ O ₃ NRs	0.36387	50.39407

Table S2. The M^{öss}bauer spectra related parameters.

Table S3. The electrocatalytic OER performances of some reported electrocatalysts.

Electrocatalyst	electrolyte	Potential (V)	Tafel	TOF	Reference
		at 10 mA cm ⁻²	slope	(s ⁻¹)	
			(mV		
			dec ⁻¹)		
Fe ₂ O ₃ -(012)-O	1 M NaOH	1.53	51.8	0.197	[1]
Fe ₂ O ₃ -(104)	1 M NaOH	1.62	62.5	0.049	[1]
FC-2	0.1 M KOH	1.56	45	/	[2]
a-Fe ₂ O ₃ @g-C	0.5 M KOH	1.65	280	/	[3]
₃ N ₄ -NCs					
α-Fe ₂ O ₃ NPs	0.5 M KOH	1.76	320	/	[3]
CM/TiO _{2-x} /CP	1 M KOH	1.47	67.1	/	[4]
NiFeSe@NiSe O	1 M KOH	1.50	63.2	/	[5]
@CC					

FeN _x /NF/EG	0.5 M	1.82	129	/	[6]
	H_2SO_4				
Fe-Fe ₂ O ₃	pH=0	2.14	/	/	[7]
Fe-Co/Fe ₂ O ₃	pH=0	2.18	/	/	[7]
Co-Co/Fe ₂ O ₃	pH=0	1.86	/	/	[7]
Rh ₂₂ Ir ₇₈ NPs	0.5 M	1.52	101	5.1	[8]
	H_2SO_4				
Mn-RuO ₂	0.5 M	1.39	42.9	0.4	[9]
	H_2SO_4				
α-Fe ₂ O ₃ NRs	1 M HCl	1.43	138	2.3	This work
Bulk α-Fe ₂ O ₃	1 M HCl	1.89	350	1.3	This work

Reference

- 1 H. Wu, T. Yang, Y. H. Du, L. S. Shen, G.W. Ho, Adv. Mater., 2018, 30, 1804341
- 2 T. W. Odedairo, X. C. Yan, K. Ostrikov, Z. H. Zhu, Adv. Mater., 2017, 29, 1703792.
- 3 O. Alduhaish, M. Ubaidullah, et. al, *Adv. Mater.*, 2019, **9**, 14139.
- 4 F. L. Meng, G. Yilmaz, T. P. Ding, M. M. Gao, and G. W. Ho, Adv. Mater., 2019, 31, 1903605.
- 5 G. Yilmaz, C. F. Tan, Y. F. Lim, and G. W. Ho, Adv. Energy Mater., 2018, 1802983
- 6 C. J. Lei, et al. Adv. Energy Mater., 2018, 8, 1801912.1-1801912.7.
- 7 N. Lu, W. H. Zhang, X. J. Wu, Chin. J. Chem. Phys. 2017, 30.
- 8 H. Y. Guo, et al. ACS Nano, 2019, **13**, 13225-13234.
- 9 S. Chen, et al. ACS Catalysis. 2019, 10, 1152-1160.