Supporting information

A near-infrared fluorescent probe with improved Stokes shift by tuning the donor-acceptor-donor character of rhodamine skeleton and its applications

Jin Gong,[†],[‡] Chang Liu, [†] Xiaojie Jiao, [†] Song He, [†] Liancheng Zhao,[†],[‡] and Xianshun

Zeng^{*,†,‡}

[†] Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China

[‡] School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China

Contents

¹ H, ¹³ C NMR spectra and HRMS of RQ and RQS	
Normalized absorption and fluorescence spectra of RQ	
Photophysical properties of RQ in different solvents	S6
MTT assay of RQ	S6
Fluorescent imaging of RQ	S6
Comparison of detection limits of various probes for detecting Hg	g ²⁺ S6-S8
Color changes of RQS towards Hg ²⁺ and various metal ions	
HRMS of RQS in the presence of Hg^{2+} ions	
pH-dependent fluorescent responses of RQS	S9
Time-dependent fluorescent responses of RQS	
MTT assay of RQS	S10
References	S10-S11

Figure S1. ¹H NMR spectra of RQ in CDCl₃

Figure S2. ¹³C NMR spectra of RQ in CDCl₃

Figure S3. ¹H NMR spectra of RQS in CDCl₃

Figure S4. ¹³C NMR spectra of RQS in CDCl₃

Figure S5. HRMS of RQ

Figure S6. HRMS of RQS

Figure S7. Absorption and fluorescence spectra of RQ in different solvents.

Sal	λ_{Abs}	λ_{em}	ε _b	Stocks shift	$\Phi_{\rm f}$	
501.	(nm)	(nm)	(M ⁻¹ cm ⁻¹)	(nm)		
CH ₃ CN	573	666	16100	93	0.11	
DCM	580	661	3800	81	0.33	
EtOH	576	664	43700	88	0.09	
H_2O	573	662	47100	89	0.03	
DMSO	581	670	1700	89	0.07	

Table S1. Photophysical properties of RQ in different solvents.

Figure S8. MTT assay of RQ. a) 24 h; b) 48 h; c) 72 h.

Figure S9. Fluorescent images of HeLa cells incubated with RQ (1 μ M) for 30 min. λ_{ex} = 559 nm, λ_{em} = 618–718 nm.

Table S2. Comparison of detection limits of various probes for detecting Hg^{2+, 1-14}

No.	Sensor structures	LOD (nM)	λ _{Abs} (nm)	λ _{em} (nm)	Stocks shift (nm)
1		20	560	585	25

2	F.B.N.	ppm scale	557	585	28
3		3.2	568	587	29
4	N Si N N	81	659	687	28
5	N N N N N N N N N N N N N N N N N N N	0.93	564	584	20
6	N C C C C C C C C C C C C C C C C C C C	2.5	565	576	11
7		28.5	556	573	17
8		5.5	503	576	73
9		870	720	760	40

Figure S10. Color change of RQS with metal ions.

Figure S11. HRMS of the reaction products of RQS with 2 equiv of Hg^{2+} .

Figure S12. Effect of pH on the fluorescence intensity of RQS (10 μ M) in the absence (black line) and presence of 100 μ M Hg²⁺ (red line).

Figure S13. Time-dependence of the fluorescence intensity at 680 nm of RQS (10 μ M) with 100 μ M Hg²⁺.

Figure S14. MTT assay of RQS. a) 24 h; b) 48 h; c) 72 h.

References

(1) E. M. Nolan and S. J. Lippard, Chem. Rev. 2008, 108, 3443;

(2) J. Hatai, S. Pal, G. P. Jose and S. Bandyopadhyay, Inorg. Chem., 2012, 51, 10129.

(3) J. Tao, X. Wang, X. Chen, T. Li, Q. Diao, H. Yu and T. Wang, *Dyes Pigm.*, 2017, **137**, 601.

(4) W. Shi and H. Ma, Chem. Commun., 2008, 16, 1856;

(5) J. Liu, D. Wu, X. Yan and Y. Guan, Talanta, 2013, 116, 563;

(6) X. Zhan, Z. Qian, H. Zheng, B. Su, Z. Lan and J. Xu, Chem. Commun., 2008, 16, 1859;

(7) S.G. Roy, S. Mondal and K. Ghosh, New J. Chem., 2020, 44, 5921;

(8) M. Wang, J. Wen, Z. Qin and H. Wang, Dyes Pigm., 2015, 120, 208;

(9) H. Yu, Y. Xiao, H. Guo and X. Qian, Chem. Eur. J., 2011, 17, 3179;

(10) S. Mandal, A. Banerjee, D. Ghosh, D. K. Mandal, D. A. Safin, M. G. Babashkina, K. Robeyns, M. P. Mitoraj, P. Kubisiak, Y. Garciac and Debasis Das, *Dalton Trans.*, 2015, 44, 13186;

(11) Z. Yang, S. Chen, Y. Zhao, P Zhou and Z. Cheng, Sen. and Actuators B Chem., 2018, 266, 422;

(12) M. Hong, Y. Chen, Y. Zhang and D. Xu, Analyst, 2019, 144, 7351

(13) S. Yao, Y. Qian, Z. Qi, C. Lu and Y. Cui, New J. Chem., 2017, 41, 13495;

(14) Y Li, S. Qi, C. Xia, Y. Xu, G. Duan and Y. Ge, Anal. Chim. Acta., 2019, 1077, 243.