Molecularly Imprinted Polymeric Coatings for Sensitive and Selective Gravimetric Detection of Artemether

Supporting Information

Usman Arshad¹, Adnan Mujahid^{*1}, Peter Lieberzeit², Adeel Afzal^{*3}, Sadia Zafar Bajwa⁴, Naseer Iqbal³, Sumaira Roshan¹

¹ Institute of Chemistry, University of the Punjab, Lahore-54590, Pakistan

² Department of Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria

³Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia

⁴ National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan

* Corresponding authors. Email: adnan.mujahid@pu.edu.pk; aa@aafzal.com

Content

Table S1. Recipes using different combinations of monomers and solvents for the synthesis ofMIPs at 60°C.

Figure S1. A schematic of the MIP-QCM sensor showing the fabrication of MIP on the surface of Au electrode. The prepolymer containing self-organized oligomers and template molecules are spin coated and polymerized to fabricate MIP-QCM sensors for artemether detection. The non-covalent interactions such as hydrogen bonds between H-bond acceptor artemether and H-bond donor methacrylic acid derive imprinting and impart selectivity to the MIP.

Figure S2. (a) The sensor response of MIP-QCM and NIP-QCM layers after a week of testing, (b) the numerical differences in the sensor response of respective sensors on day '0' and day '7'. Both MIP-QCM and NIP-QCM sensors show good inter-day stability.

MIP systems	MAA	EGDMA	MMA	Styrene	DVB	Artemether	AIBN	Solvent
Recipe 1	\checkmark	\checkmark				\checkmark	\checkmark	DMSO
	(15 µL)	(30 µL)	-	-		(5 mg)	(5 mg)	(600 µL)
Recipe 2	\checkmark	_	_	\checkmark	\checkmark	\checkmark	\checkmark	THF
	(8 µL)			(8 µL)	(60 µL)	(5 mg)	(5 mg)	(1000 µL)
Recipe 3	_	_	_	\checkmark	\checkmark	\checkmark	\checkmark	THF
				(15 µL)	(60 µL)	(5 mg)	(5 mg)	(1000 µL)
Recipe 4	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	DMF
				(15 µL)	(60 µL)	(5 mg)	(5 mg)	(1000 µL)
Recipe 5	\checkmark	\checkmark	\checkmark	_	_	\checkmark	\checkmark	DMSO
	(8 µL)	(32 µL)	(8 µL)			(5 mg)	(5 mg)	(600 µL)

Table S1: Recipes using different combinations of monomers and solvents for the synthesis ofMIPs at 60°C.

Figure S1. A schematic of the MIP-QCM sensor showing the fabrication of MIP on the surface of Au electrode. The prepolymer containing self-organized oligomers and template molecules are spin coated and polymerized to fabricate MIP-QCM sensors for artemether detection. The non-covalent interactions such as hydrogen bonds between H-bond acceptor artemether and H-bond donor methacrylic acid derive imprinting and impart selectivity to the MIP.

Figure S2. (a) The sensor response of MIP-QCM and NIP-QCM layers after a week of testing, (b) the numerical differences in the sensor response of respective sensors on day '0' and day '7'. Both MIP-QCM and NIP-QCM sensors show good inter-day stability.