Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.

This journal is © The Royal Society of Chemistry 2020

Electronic Supporting information

A deep-red fluorescent molecular rotor based on donor-twoacceptor modular system for imaging mitochondrial viscosity

Xiaoxi Yin^{a, b, c}, Yiping Cai^{a, b, c}, Songtao Cai^{a, b}, Xiaojie Jiao^{a, b}, Chang Liu^{a, b}, Song He^{a, b*}, Xianshun Zeng^{a, b*}

^a Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384.

^b Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China. ^c These authors contributed equally to this work.

E-mail: hesong@tjut.edu.cn; xshzeng@tjut.edu.cn Tel.: +86-022-6021-6748

1. Materials and instruments

Chemical reagents used in the experiment were purchased from TCI or Sigma-Aldrich companies without secondary treatment. The bio-reagents were purchased from Beyotime Institute of Biotechnology. The deionized water for analysis was obtained from a Milli-Q ultrapure system. NMR spectra were recorded on a Bruker spectrometer at 400 (¹H NMR) MHz and 100 (¹³C NMR) MHz. High-resolution mass spectra (HRMS) were acquired on an Agilent 6510 Q-TOF LC/MS instrument. All UV absorption spectra in this paper were done by a Shimadzu UV-2550 UV/Vis spectrophotometer and all fluorescence emission spectra were done by a Hitachi F-4600 fluorophotometer. Fluorescence lifetime test were measured by Edinburgh FLS1000 steady state transient fluorescence spectrometer. Cells were imaged on an Olympus FV100-IX81confocal microscope. All cell images were analyzed with Olympus FV1000-ASW.

2. Viscosity spectroscopy measurement

The stock solution of **DpCy7** was 5×10^{-3} M in DMSO. Solvents with different viscosities are obtained by mixing deionized water and glycerol in different ratios. A working solution (e. g. 5.0 μ M) of **DpCy7** of different viscosity was prepared by adding 3 μ L of stock solution to 3 mL of the required solvent mixture. The prepared solutions were mixed uniformly by using an oscillator for 1 min and standing for 5 min before UV-vis and fluorescence spectral analysis. Fluorescence spectra of solution were excited at 570 nm with excitation slit width and emission slit width set at 5 nm and 2.5 nm, respectively.

3. Measurement of fluorescence quantum yield

Fluorescence quantum yield (Φ_F) was measured by using rhodamine B in ethanol (Φ_F = 0.73, in ethanol) as the reference. The quantum yield was calculated by the following equation.^[1]

$$\emptyset_{F(x)} = \emptyset_{F(x)} \left(\frac{A_s F_x}{A_x F_s} \right) \left(\frac{\eta_x}{\eta_s} \right)^2$$

Where Φ_F is the fluorescence quantum yield, A is the absorbance at the certain excitation wavelength, F is the area under the corrected emission curve, and η is the refractive index of the solvent. Subscripts X and S refer to the unknown and to the standard, respectively.

Fig. S1 (a) Fluorescence spectra of **DpCy7** (5 μ M) in pure water at different pH. (b) Fluorescence spectra of **DpCy7** (5 μ M) in 50% glycerol aqueous solution at different pH. (c) Fluorescence dot plots spectra of **DpCy7** (5 μ M) at 670 nm among different pH in water (black) and 50% glycerol aqueous solution (red). Inset: Color changes of **DpCy7** in the water and glycerol under UV irradiation.

Fig S2 (a) Three ionization states of the probe **DpCy7** under different pH conditions. (b) ¹H NMR titration of **DpCy7** with NaOH in DMSO-d₆.

Fig.S3 a) UV-vis spectra of probe DpCy7 (10 $\mu M)$ in different pH aqueous solution; b) and c) pH-absorbance fit sigmoidal of DpCy7

Fig. S4 UV-vis responses of **DpCy7** (10 μ M) upon the different solvents: DMSO, tetrahydrofuran, dichloromethane, methanol, H₂O, acetonitrile and glycerol.

Solvents	$\lambda_{\text{abs}}(nm)$	$\lambda_{\text{em}}(\text{nm})$	Stokes shift (nm)	Φ
DMSO	667	700	33	0.08
THF	642	693	51	0.12
DCM	657	694	37	0.09
MeOH	643	683	40	0.13
H ₂ O	577	670	93	0.05
MeCN	648	689	41	0.10
Glycerol	615	688	73	0.39

Table S1 Spectral properties of DpCy7 in different solvents

Table S2 HOMO and LUMO energy of DpCy7@H⁺ and DpCy7 calculated at B3LYP/6-31G (d) level.

	LUMO (eV)	HOMO (eV)	ΔΕ (eV)
DpCy7@H⁺	-7.91	-10.92	3.01
DpCy7	-5.20	-7.47	2.27

Fig. S5 Fluorescence spectrum of DpCy7 (5 μ M) in ethylene glycol.

	I ₆₈₈	Exp. log $\eta^{\#}$	Calc. log $\eta^{\scriptscriptstyle [2]}$	Error%
Ethylene glycol	286	1.169	1.244	6.0%

Table S3 The comparison of the experimental and predicated viscosity for ethylene glycol

#: calculated by the Förster-Hoffmann equation of log I_{688} = 1.79 + 0.57 log η

Fig. S6 Time-dependent fluorescence spectrum of probe $\mbox{DpCy7}$ (5µM) in water and 50% water-glycerol.

Fig. S7 Fluorecence spectra of **DpCy7** (5 μ M) upon the addition of various anion (50 μ M). (1) Cl⁻, (2) ClO⁻, (3) Cys, (4) GSH, (5) H₂O₂, (6) Hcy, (7) HSO₃⁻, (8) HSO₄⁻, (9) SO₃²⁻, (10) SO₄²⁻, (11) blank, (12) glycerol.

Fig. S8 The MTT assay of DpCy7.

Fig. S9 Co-localization experiments involving with probe **DpCy7** (0.1 μ M) and Lyso Tracker Green (200 nM, a-e) and ER Tracker Green (200 nM). f-j) in HeLa cells incubated with 1 μ M monensin at 37°C for 30 min. a) and f): Confocal image with co-localization agents on green channel; b) and g): Confocal image from 0.1 μ M probe **DpCy7** on red channel; c) and h): Overlay of green and red channels; d) and i): The intensity profile of ROI lines; e) and j): Fluorescence intensity plot of co-localization agent channel and **DpCy7** channel. Scale bar = 10 μ m

Fig. S10 ¹H NMR of 2, 4-Dihydroxy-3-methylisophtalaldehyde (1) (400 MHz, DMSO-d₆).

Fig. S11 ¹H NMR of the protonated **DpCy7** (400 MHz, DMSO- d_6).

Fig. S13 HRMS (LC/MS) spectra of the protonated DpCy7. The peak at m/z = 250.0822 was assigned to the mass of $[DpCy7-2BF_4^-]^{2+}$.

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

References

100 200 300

400

500

- [1]. D. Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka, Y. Urano and T Nagano, J. Am. Chem. Soc., 2010, 132, 2795.
- [2]. A. R. Katritzky, K. Chen, Y. Wang, M. Karelson, B. Lucic, N. Trinajstic, T. Suzuki, G. Schüürmann J. Phys. Org. Chem. 2000, 13, 80.