Supplementary Materials for

Electronic Structure and Thermoelectric Properties of Full Heusler Compounds Ca_2YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb)

Yang Hu¹, Yurong Jin^{1,3}, Guangbiao Zhang^{1,2}, Yuli Yan^{1,2*}
¹Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China; red² International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, China; ³Chongqing Institute of Engineering, Chongqing 402360, China (Dated: July 20, 2020)

Introduction

To determine the phase stability, we calculated the phonon dispersion using phonopy [1] and forces from vasp [2] in the frozen phonon approximation with $2 \times 2 \times 2$ supercell. Phonon dispersion of Ca₂YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb) along the high-symmetry direction is shown in Fig.S1. From this figure we can see that the calculated phonon spectra have no imaginary frequency, which indicates that Ca₂YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb) are stable thermodynamically.

Togo, A. Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 15 (2015).

^[2] D. M. Ceperley and B. Alder, Ground state of the electron gas by a stochastic method, *Phys.Rev.Lett.* 45, 566 (1980).

Comp.	Eg(eV)/f.u. (L21)	Eg(eV)/f.u. (XA)	
Ca ₂ AuAs	-15.6702	-13.3465	
Ca_2AuSb	-14.9002	-7.56019	
Ca_2AuBi	-14.2891	-12.456	
$\rm Ca_2HgSn$	-10.5097	-8.9281	
$\mathrm{Ca_{2}HgPb}$	-9.9781	-8.5392	

Table.S I: Total free energy of a f.u. Ca_2YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb).

Fig.S 1: Phonon dispersion of Ca_2YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb).