Sensitivity enhancement *via* multiple contacts in the {¹H-²⁹Si}-¹H cross polarization experiment: A case study of modified silica nanoparticle surfaces

Chuanyu Yan,^{a,b} François Kayser^c and Reiner Dieden*^a

^a. Luxembourg Institute of Science and Technology, Department "Materials Research and Technology", Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.

^b. University of Luxembourg, Faculty of Science, Technology and Communication, Avenue des Hauts-Fourneaux, L-4365 Esch-sur-Alzette, Luxembourg.

^c. Goodyear Innovation Center Luxembourg, Avenue Gordon Smith, L-7750 Colmar-Berg, Luxembourg.

*Corresponding Author: reiner.dieden@list.lu Telephone : (+352) 275 888 4576 Fax : (+352) 275 885.

Part 1, Details of solid-state NMR pulse sequences. Part 2, Supplementary data.

Part 1, Solid-State NMR pulse sequences and experiments.

Fig. S2 Proton spin-lattice relaxation constant (T_1^H) measurement of the DMSO-h₆adsorbed SiNP using standard saturation recovery pulse sequence, where delay between two consecutive 90° pulses $(\tau_{sat}) = 1$ ms, total number of 90° pulses (n) = 64. The T₁'s were obtained by fitting the peak intensities to a single exponential function (embedded in the figure). The fitting was performed using the software OriginPro 2018 (64-bit) SR1. The standard errors were estimated by the fitting errors.

Fig. S3 ¹H reference spectra used for the chemical shift assignments of silanol, water and DMSO. These spectra were obtained from the ¹H onepulse (1 to 5) and {¹H-²⁹Si}-¹H (6) DCPi ssNMR experiments. Samples used for obtaining these spectra are 1 "SiNP-as received", 2 liquid DMSO-H6, 3 liquid water, 4 DMSO-d₆-adsorbed SiNP and 5 & 6 DMSO-H₆-adsorbed SiNP, respectively. For spectra 1 to 3, RD = 2 s and NS = 4. For spectra 4 & 5, RD = 4 s and NS = 4. For spectrum 6, RD = 4 s , NS = 2048, t_{cp1} = t_{cp2} = 5 ms.

Fig. S4 The sensitivity comparison between { $^{1}\text{H}-{}^{29}\text{Si}$ }- ^{1}H MCPi and DCPi (RD = **0.44** s, t_{cp1} = 1.0, 2.5 & 5.0 ms, t_{cp2} = 5 ms, *m* = 3 for MCPi). Sample is DMSO-adsorbed SiNP (SiNP: DMSO-h₆ = 0.20 g : 0.11 g).

Fig. S5 The sensitivity comparison between ${}^{1}H{}^{-29}Si{}^{-1}H$ MCPi and DCPi (RD = **4.0 s**, t_{cp1} = 1.0, 2.5 & 5.0 ms, t_{cp2} = 5 ms, *m* = 3 for MCPi). Sample is DMSO-adsorbed SiNP (SiNP: DMSO-h₆ = 0.20 g : 0.11 g).

Table S1. Comparison of the signal-to-noise ratio (S/N) between MCPi and DCPi sequences for DMSO-adsorbed SiNP (SiNP: DMSO- $h_6 = 0.20 \text{ g} : 0.11 \text{ g}$).

	DCPi Experiment (RD = 0.44 s)				
		S/N for	S/N for	S/N for	
	Experiment	Silanol	water	DMSO	
	time per	peak (6.5	peak (4.0	peak (2.9	
	scan, Expt/s	to 8.0	to 5.0	to 3.5	
t _{cp1} /ms		ppm)	ppm)	ppm)	
1.00	0.5600	17.61	8.51	2.10	
2.50	0.5615	29.43	16.93	6.00	
5.00	0.5640	37.62	23.70	9.94	
	MCPi Experiment (RD = 0.44 s)				
1.00	2.6620	41.70	23.43	9.94	
2.50	2.6665	59.84	33.25	14.87	
5.00	2.6740	82.18	45.92	20.83	
Note: the noise region was defined from 15 to 25 ppm.					

Table S2. Comparison of the signal-to-noise ratio (S/N) between MCPi and DCPi sequences for DMSO-adsorbed SiNP (SiNP: DMSO- $h_6 = 0.20 \text{ g} : 0.11 \text{ g}$).

	DCPi Experiment (RD = 4.0 s)				
		S/N for	S/N for	S/N for	
	Experiment	Silanol	water	DMSO	
	time per	peak (6.5	peak (4.0	peak (2.9	
	scan, Expt/s	to 8.0	to 5.0	to 3.5	
t _{cp1} /ms		ppm)	ppm)	ppm)	
1.00	4.1200	18.95	11.51	3.93	
2.50	4.1215	35.83	19.86	5.74	
5.00	4.1240	48.69	28.96	10.83	
	MCPi Experiment (RD = 4.0 s)				
1.00	6.2220	62.73	36.08	11.93	
2.50	6.2265	66.44	35.96	11.90	
5.00	6.2340	94.04	51.84	17.17	
Note: the noise region was defined from 15 to 25 ppm.					

Fig. S6 The sensitivity dependence on t_{cp2} in the { $^{1}H^{-29}Si$ }- ^{1}H MCPi experiment (t_{cp1} = 5 ms, t_{cp2} = variable, m = 3). Sample is DMSO-adsorbed SiNP (SiNP: DMSO-h₆ = 0.20 g : 0.11 g).

Fig. S7 ¹H one-pulse spectra of silanized silica (RD = 4.0 s) and polymer-silica composite (RD = 0.5 to 5.0 s).

Fig. S8 ²⁹Si multiCP spectrum of the polymer-silica composite obtained by the pulse sequence of Fig. S1C. Acquisition parameters: MAS speed = 14 kHz, RD = 4.0 s, τ_{rel} = 0.7 s, contact time = 5 ms, multiCP looping number m = 2 (*i.e.* 3 contacts in total) and accumulation of 662 scans.

Fig. S9 For the sample containing large organic molecule, the saturation pulse train of Fig. S1A & B was replaced by a more efficient scheme, which consists of two long out-of-phase pulses at low power (each pulse duration is 500 ms and pulse power level is 1 Watts, respectively). This saturation scheme has been reported previously.^{4, 5}

Table S3. The signal-to-noise ratio (S/N) of the DCPi/MCPi spectra of the polymer-silica composite.

m=	Experiment time per scan, Expt/s	S/N for silanol peak (5.5 to 8.0 ppm)	S/N for water peak (3.0 to 5.0 ppm)	S/N for silane peak (0.0 to 1.0 ppm)			
1	5.0600	8.06	13.95	24.12			
3	7.1700	11.65	18.14	36.05			
6	9.2850	16.05	26.57	49.21			
Note: the noise region was defined from 15 to 25 ppm.							

Fig. S10 {¹H-²⁹Si}-¹H MCPi spectra of the polymer-silica composite obtained by a slightly modified pulse sequence (Fig. S9): RD= 4.0 s, $t_{cp1} = 5 \text{ ms}$, $\tau_{rel} = 0.7 \text{ s}$, m = 3 and $t_{cp2} = 1 \text{ ms}$ (black), 10 ms (blue) and 15 ms (green). Grey boxed are the regions where the polyisoprene signals would be expected.

References:

- 1. N. Baccile, G. Laurent, C. Bonhomme, P. Innocenzi and F. Babonneau, *Chem. Mater.*, 2007, **19**, 1343-1354.
- 2. R. L. Johnson and K. Schmidt-Rohr, J. Magn. Reson., 2014, 239, 44-49.
- 3. A. E. Bennett, R. G. Griffin, J. H. Ok and S. Vega, *The Journal of Chemical Physics*, 1992, **96**, 8624-8627.
- 4. J. W. Wiench, C. E. Bronnimann, V. S. Y. Lin and M. Pruski, *J. Am. Chem. Soc.*, 2007, **129**, 12076-12077.
- 5. N. Folliet, C. Roiland, S. Bégu, A. Aubert, T. Mineva, A. Goursot, K. Selvaraj, L. Duma, F. Tielens, F. Mauri, G. Laurent, C. Bonhomme, C. Gervais, F. Babonneau and T. Azaïs, *J. Am. Chem. Soc.*, 2011, **133**, 16815-16827.