Electronic Supplementary Information

Base-iodine-promoted metal-catalyst-free reactions of [60]fullerene with β-keto esters for selective formation of [60]fullerene derivatives

Han-Lin Yang^a, Li-Jun Xu^{b,c}, Wen-Zhong Li^a, Tao Sun^d, Bao-Rong Duan^a, Si Chen^{*,a} and Xiang Gao^b

^aCollege of Chemistry and Chemical Engineering, Yantai University 30 Qingquan Road, Yantai, Shandong 264005, China

^bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China

^cUniversity of Science and Technology of China, Hefei, Anhui 230026, China

^dSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

* E-mail: sichen@ytu.edu.cn; chemchensi@163.com

Table of Contents

Figure S1. UV-visible spectrum of 2a	S4
Figure S2. MALDI-TOF MS of 2a	S5
Figure S3. ¹ H NMR spectrum of 2a	S6
Figure S4. ¹³ C NMR spectrum of 2a	S7
Figure S5. UV-visible spectrum of 3a	S 8
Figure S6. MALDI-TOF MS of 3a	S9
Figure S7. ¹ H NMR spectrum of 3a	S10
Figure S8. ¹³ C NMR spectrum of 3a	S11
Figure S9. UV-visible spectrum of 2b	S12
Figure S10. MALDI-TOF MS of 2b	S13
Figure S11. ¹ H NMR spectrum of 2b	S14
Figure S12. ¹³ C NMR spectrum of 2b	S15

Figure S13. UV-visible spectrum of 3b	S16
Figure S14. MALDI-TOF MS of 3b	S17
Figure S15. ¹ H NMR spectrum of 3b	S18
Figure S16. ¹³ C NMR spectrum of 3b	S19
Figure S17. UV-visible spectrum of 2c	S20
Figure S18. MALDI-TOF MS of 2c	S21
Figure S19. ¹ H NMR spectrum of 2c	S22
Figure S20. ¹³ C NMR spectrum of $2c$	S23
Figure S21. UV-visible spectrum of 3c	S24
Figure S22. MALDI-TOF MS of 3c	S25
Figure S23. ¹ H NMR spectrum of 3c	S26
Figure S24. ¹³ C NMR spectrum of 3c	S27
Figure S25. UV-visible spectrum of 2d	S28
Figure S26. MALDI-TOF MS of 2d	S29
Figure S27. ¹ H NMR spectrum of 2d	S 30
Figure S28. ¹³ C NMR spectrum of 2d	S31
Figure S29. UV-visible spectrum of 3d	S32
Figure S30. MALDI-TOF MS of 3d	S33
Figure S31. ¹ H NMR spectrum of 3d	S34
Figure S32. ¹³ C NMR spectrum of 3d	S35
Figure S33. UV-visible spectrum of 2e	S36
Figure S34. MALDI-TOF MS of 2e	S 37
Figure S35. ¹ H NMR spectrum of 2e	S38
Figure S36. ¹³ C NMR spectrum of 2e	S39

Figure S37. UV-visible spectrum of 3e	S40
Figure S38. MALDI-TOF MS of 3e	S41
Figure S39. ¹ H NMR spectrum of 3e	S42
Figure S40. ¹³ C NMR spectrum of 3e	S43
Figure S41. UV-visible spectrum of 2f	S44
Figure S42. MALDI-TOF MS of 2f	S45
Figure S43. ¹ H NMR spectrum of 2f	S46
Figure S44. ¹³ C NMR spectrum of 2f	S47
Figure S45. UV-visible spectrum of 3f	S48
Figure S46. MALDI-TOF MS of 3f	S49
Figure S47. ¹ H NMR spectrum of 3f	S50
Figure S48. ¹³ C NMR spectrum of 3f	S51

Figure S1. UV-visible spectrum of compound 2a in toluene.

Figure S2. MALDI-TOF MS of compound 2a

Figure S3. ¹H NMR spectrum (600 MHz) of compound **2a** recorded in CS₂ with DMSO-*d*₆ as the external lock. The resonances at 2.5 ppm and 3.3 ppm are due to the DMSO solvent and H_2O in DMSO respectively.

Figure S4. ¹³C NMR spectrum (151 MHz) of compound **2a** recorded in CS₂ with DMSO- d_6 as the external lock.

Figure S5. UV-visible spectrum of compound 3a in toluene.

Figure S6. MALDI-TOF MS of compound 3a

Figure S7. ¹H NMR spectrum (600 MHz) of compound **3a** recorded in CS₂ with DMSO-*d*₆ as the external lock. The resonances at 2.5 ppm and 3.3 ppm are due to the DMSO solvent and H_2O in DMSO respectively.

Figure S8. ¹³C NMR spectrum (151 MHz) of compound **3a** recorded in CS₂ with DMSO- d_6 as the external lock.

Figure S9. UV-visible spectrum of compound 2b in toluene.

Figure S10. MALDI-TOF MS of compound 2b

Figure S11. ¹H NMR spectrum (600 MHz) of compound **2b** recorded in CS₂ with DMSO- d_6 as the external lock. The resonances at 2.5 ppm and 3.3 ppm are due to the DMSO solvent and H₂O in DMSO respectively.

Figure S12. ¹³C NMR spectrum (151 MHz) of compound **2b** recorded in CS₂ with DMSO-*d*₆ as the external lock.

Figure S13. UV-visible spectrum of compound 3b in toluene.

Figure S14. MALDI-TOF MS of compound 3b

Figure S15. ¹H NMR spectrum (600 MHz) of compound **3b** recorded in CS₂ with DMSO- d_6 as the external lock. The resonances at 2.5 ppm and 3.3 ppm are due to the DMSO solvent and H₂O in DMSO respectively. The peaks labeled with asterisks belong to toluene residue in the sample.

Figure S16. ¹³C NMR spectrum (151 MHz) of compound **3b** recorded in CS₂ with DMSO-*d*₆ as the external lock. The peaks labeled with asterisks belong to toluene residue in the sample.

Figure S17. UV-visible spectrum of compound 2c in toluene.

Figure S18. MALDI-TOF MS of compound 2c

Figure S19. ¹H NMR spectrum (500 MHz) of compound **2c** recorded in CS_2 -CDCl₃ (v/v=2:1). The resonance at 7.26 ppm is due to the CHCl₃ solvent.

Figure S20. ¹³C NMR spectrum (151 MHz) of compound **2c** recorded in CS₂-CDCl₃ (v/v=2:1).

Figure S21. UV-visible spectrum of compound 3c in toluene.

Figure S22. MALDI-TOF MS of compound 3c

Figure S23. ¹H NMR spectrum (600 MHz) of compound **3c** recorded in CS_2 -CDCl₃ (v/v=2:1). The resonance at 7.26 ppm is due to the CHCl₃ solvent.

Figure S24. ¹³C NMR spectrum (151 MHz) of compound **3c** recorded in CS_2 -CDCl₃ (v/v=2:1).

Figure S25. UV-visible spectrum of compound 2d in toluene.

Figure S26. MALDI-TOF MS of compound 2d

Figure S27. ¹H NMR spectrum (600 MHz) of compound **2d** recorded in CS_2 -CDCl₃ (v/v=2:1). The resonance at 7.26 ppm is due to the CHCl₃ solvent.

Figure S28. ¹³C NMR spectrum (151 MHz) of compound **2d** recorded in CS₂-CDCl₃ (v/v=2:1).

Figure S29. UV-visible spectrum of compound 3d in toluene.

Figure S30. MALDI-TOF MS of compound 3d

Figure S31. ¹H NMR spectrum (600 MHz) of compound **3d** recorded in CS_2 -CDCl₃ (v/v=2:1). The resonance at 7.26 ppm is due to the CHCl₃ solvent.

Figure S32. ¹³C NMR spectrum (151 MHz) of compound **3d** recorded in CS_2 -CDCl₃ (v/v=2:1).

Figure S33. UV-visible spectrum of compound 2e in toluene.

Figure S34. MALDI-TOF MS of compound 2e

Figure S35. ¹H NMR spectrum (600 MHz) of compound **2e** recorded in CS₂-CDCl₃ (v/v=2:1).

Figure S36. ¹³C NMR spectrum (151 MHz) of compound **2e** recorded in CS_2 -CDCl₃ (v/v=2:1).

Figure S37. UV-visible spectrum of compound 3e in toluene.

Figure S38. MALDI-TOF MS of compound 3e

Figure S39. ¹H NMR spectrum (600 MHz) of compound **3e** recorded in CS_2 -CDCl₃ (v/v=2:1).

Figure S40. ¹³C NMR spectrum (151 MHz) of compound **3e** recorded in CS₂-CDCl₃ (v/v=2:1). The peaks labeled with asterisks belong to toluene residue in the sample.

Figure S41. UV-visible spectrum of compound 2f in toluene.

Figure S42. MALDI-TOF MS of compound 2f

Figure S43. ¹H NMR spectrum (600 MHz) of compound **2f** recorded in CS₂-CDCl₃ (v/v=2:1). The resonance at 7.26 ppm is due to the CHCl₃ solvent.

Figure S44. ¹³C NMR spectrum (151 MHz) of compound **2f** recorded in CS₂-CDCl₃ (v/v=2:1).

Figure S45. UV-visible spectrum of compound 3f in toluene.

Figure S46. MALDI-TOF MS of compound 3f

Figure S47. ¹H NMR spectrum (600 MHz) of compound **3f** recorded in CS_2 -CDCl₃ (v/v=2:1). The resonance at 7.26 ppm is due to the CHCl₃ solvent.

Figure S48. ¹³C NMR spectrum (151 MHz) of compound **3f** recorded in CS₂-CDCl₃ (v/v=2:1). The peaks labeled with asterisks belong to toluene residue in the sample.