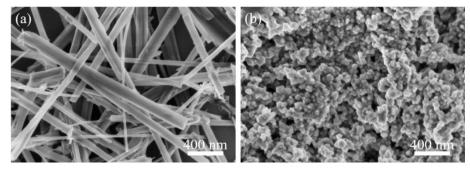
Hydrothermal synthesis and adsorption behavior of H₄Ti₅O₁₂

nanorods along [100] as lithium ion-sieves

Bing Zhao,^{a,b,c} Min Guo,^{*a,b} Fangren Qian,^{a,b,c} Zhiqiang Qian,^{a,b} Naicai Xu,^d Zhijian Wu,^{a,b} and Zhong Liu^{*a,b}

^a Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,

Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China


^b Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China

° University of Chinese Academy of Sciences, Beijing 100049, China

^d School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008,

China

1. Effect of second hydrothermal temperature on the nanorod morphology.

Fig. S1. SEM images of titanium oxides obtained at (a) 95°C and (b) 120°C for 24 h in the second hydrothermal process.

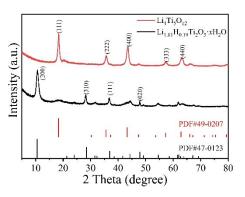
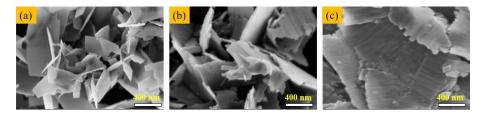



Fig. S2. The XRD patterns of lithium titanium oxides obtained from different treatment process. $Li_{1.81}H_{0.19}Ti_2O_5$:xH₂O and $Li_4Ti_5O_{12}$.

Fig. S3. Low-magnification SEM images of synthesized products: (a) $Li_{1.81}H_{0.19}Ti_2O_5 xH_2O$ nanosheets (b) $Li_4T_5O_{12}$ nanosheets and (c) $H_4T_5O_{12}$ nanosheets.

Fig. S4. The effect of LiCl concentrations and adsorption temperatures on the Li⁺ adsorption by different shapes of H₄Ti₅O₁₂. (a) $C_{LiCl} = 12$ mM, $T = 25^{\circ}$ C, (b) $C_{LiCl} = 24$ mM, $T = 25^{\circ}$ C, (c) $C_{LiCl} = 24$ mM, $T = 25^{\circ}$ C and (d) $C_{LiCl} = 36$ mM, $T = 25^{\circ}$ C.

2. Effect of different adsorption temperatures on the Li⁺ adsorption

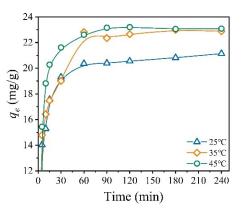
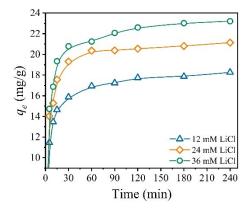



Fig. S5. The adsorption capacities at different adsorption temperatures. (adsorbent: 0.1 g, LiCl

concentration: 24mM, volume: 50 mL, shaking speed: 150 rpm, pH value: 13).

3. Effect of LiCl concentrations on the Li^+ adsorption

Fig. S6. The adsorption capacities at different LiCl concentrations. (adsorbent: 0.1 g, volume: 50 mL, shaking speed: 150 rpm, temperature: 25°C, pH value: 13).

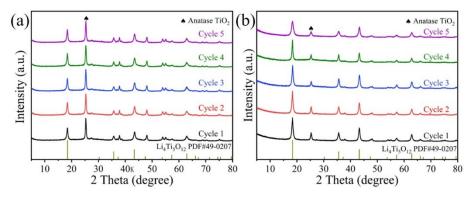


Fig. S7. in revised supporting information. The XRD patterns of (a) $H_4Ti_5O_{12}$ and (b) $r-Li_4Ti_5O_{12}$ obtained from each cycle.